Evaluation of dynamic uniformity and application efficiency of mobile drip irrigation

Abstract

Irrigation uniformity, application efficiency and seasonal irrigation uniformity of mobile drip irrigation (MDI) were compared to those of low elevation spray application (LESA) and low energy precision application (LEPA). A center pivot fitted with two sets of MDI (with dripper flow rates of 3.8 L/h and 7.6 L/h), LESA and LEPA was used in this study. Irrigation uniformity tests were conducted in accordance with the American Society of Agricultural Engineers’ standards. Application efficiency was computed as the ratio of depth of water retained in the root zone to that applied. Potential differences in season-long irrigation uniformity were evaluated by analysis of periodically acquired aerial vegetative index data. The coefficient of uniformity of the 3.8 L/h and 7.6 L/h MDI was 93.8% and 93.7%, respectively, and 95.1% for LEPA, and 83.8% for LESA. Application efficiencies for the 3.8 L/h and 7.6 L/h MDI, LEPA and LESA were 76.1, 96.8, 98.4 and 51.2%, respectively. There were no significant differences (p value = 0.5749) in the amount of water stored in the soil profile between MDI, LESA and LEPA, 72 h after irrigation. For three irrigation capacities of 6.2, 3.1 and 1.6 mm/day, there were no significant differences in mean seasonal Advanced Difference Vegetative Index (ADVI) between MDI, LESA and LEPA, with p value = 0.987, 0.999 and 0.999, respectively. A similar observation was made for Normalized Difference Vegetative Index, with p value = 0.998, 0.999 and 0.999, for MDI, LESA and LEPA, respectively. Higher coefficient of uniformity and higher application efficiency for MDI and LEPA indicate that they were more efficient than LESA. These results show that MDI can adapt the high efficiency of traditional drip irrigation to center pivot systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. American Society of Agricultural and Biological Engineers (2003) ANSI/ASAE S436.1 JUN1996 (R2012). Test procedure for determining the uniformity of water distribution of center pivot and lateral move irrigation machines equipped with spray or sprinkler nozzles, pp 932–938

  2. American Society of Agricultural Engineers (2014) ASAE EP405.1 APR1988 (R2014): design and installation of microirrigation systems

  3. ASAE Standards (1996) EP458. Field evaluation of microirrigation systems, St. Joseph

  4. Balafoutis AT, Beck B, Fountas S et al (2017) Smart farming technologies—description, taxonomy and economic impact. In: Pedersen SM, Lind KM (eds) Precision agriculture: technology and economic perspectives front cover. Springer, Berlin, pp 21–78

    Google Scholar 

  5. Buchleiter GW (1992) Performance of LEPA equipment on center pivot machines. Appl Eng Agric 8:631

    Article  Google Scholar 

  6. Camp CR (1998) Subsurface drip irrigation: a review. Trans ASAE 41:1353–1367

    Article  Google Scholar 

  7. Camp CR, Sadler EJ, Busscher WJ (1997) A comparison of uniformity measures for drip irrigation systems. Trans ASAE 40:1013–1020. https://doi.org/10.13031/2013.21353

    Article  Google Scholar 

  8. Candiago S, Remondino F, De Giglio M et al (2015) Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens 7:4026–4047

    Article  Google Scholar 

  9. Connellan G (2013) Water use efficiency for irrigated turf and landscape. CSIRO, Collingwood

    Book  Google Scholar 

  10. Fan J, Wu L, Zhang F et al (2017) Evaluation of drip fertigation uniformity affected by injector type, pressure difference and lateral layout. Irrig Drain 66:520–529. https://doi.org/10.1002/ird.2136

    Article  Google Scholar 

  11. Goldberg D, Shmueli M (1970) Drip irrigation—a method used under arid and desert conditions of high water and soil salinity. Trans ASAE 13:38–41

    Article  Google Scholar 

  12. Goyal MR (2012) Management of drip/trickle or micro irrigation. CRC, Boca Raton

    Book  Google Scholar 

  13. Howell TA (2003) Irrigation efficiency. Marcel Dekker, New York

    Google Scholar 

  14. Irmak S, Odhiambo LO, Kranz WL, Eisenhauer DE (2011) Irrigation efficiency and uniformity, and crop water use efficiency

  15. Jackson RD, Huete AR (1991) Interpreting vegetation indices. Prev Vet Med 11:185–200. https://doi.org/10.1016/S0167-5877(05)80004-2

    Article  Google Scholar 

  16. Jovanovic N, Israel S (2012) Critical review of methods for the estimation of actual evapotranspiration in hydrological models. In: Irmak A (ed) Evapotranspiration—remote sensing and modeling. InTech, London, pp 329–350

    Google Scholar 

  17. Kincaid DC (2005) Application rates from center pivot irrigation with current sprinkler types. Appl Eng Agric 21:605–610

    Article  Google Scholar 

  18. Kisekka I, Oker T, Nguyen G et al (2017) Revisiting precision mobile drip irrigation under limited water. Irrig Sci 35:483–500. https://doi.org/10.1007/s00271-017-0555-7

    Article  Google Scholar 

  19. Klocke NL, Currie RS, Tomsicek DJ et al (2011) Corn yield response to deficit irrigation. Trans ASABE 54:931–940

    Article  Google Scholar 

  20. Lamm FR (1998) Uniformity of in-canopy center pivot sprinkler irrigation. In: ASAE meeting presentation, Orlando, FL

  21. Lamm FR, Rogers DH (2017) Longevity and performance of a subsurface drip irrigation system. Trans ASABE 60:931–939. https://doi.org/10.13031/trans.12237

    CAS  Article  Google Scholar 

  22. Lee CO (1920) Irrigation tile

  23. Li J, Meng Y, Li B (2007) Field evaluation of fertigation uniformity as affected by injector type and manufacturing variability of emitters. Irrig Sci 25:117–125. https://doi.org/10.1007/s00271-006-0039-7

    Article  Google Scholar 

  24. Littell RC, Milliken GA, Stroup WW et al (2006) SAS for mixed models, 2nd edn. SAS, Cary

    Google Scholar 

  25. Nautiyal M, Grabow GL, Huffman RL et al (2015) Residential irrigation water use in the central piedmont of North Carolina. II: Evaluation of smart irrigation technologies. J Irrig Drain Eng 141:4014062. https://doi.org/10.1061/(asce)ir.1943-4774.0000820

    Article  Google Scholar 

  26. O’Shaughnessy SA, Evett SR, Colaizzi PD, Howell TA (2013) Wireless sensot network effectively controls center pivot irrigation of Sorghum. Appl Eng Agric 29:853–864. https://doi.org/10.13031/aea.29.9921

    Article  Google Scholar 

  27. Oker TE, Kisekka I, Sheshukov AY et al (2018) Evaluation of maize production under mobile drip irrigation. Agric Water Manag 210:11–21. https://doi.org/10.1016/J.AGWAT.2018.07.047

    Article  Google Scholar 

  28. Ondrasek G (2013) Water scarcity and water stress in agriculture. In: Parvaiz A, Mohd RW (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, p 403

    Google Scholar 

  29. Pathak P, Sahrawat KL, Wani SP et al (2009) Opportunities for water harvesting and supplemental irrigation for improving rainfed agriculture in semi-arid areas. In: Wani SP, Rockström J, Oweis T (eds) Rainfed agriculture : unlocking the potential. CABI, Wallingford, pp 197–221

    Google Scholar 

  30. Payero JO, Melvin SR, Irmak S, Tarkalson D (2006) Yield response of corn to deficit irrigation in a semiarid climate. Agric Water Manag 84:101–112. https://doi.org/10.1016/j.agwat.2006.01.009

    Article  Google Scholar 

  31. Pereira LS, Trout TJ (1999) Irrigation methods. In: van Lier HN, Pereira LS, Steiner FR (eds) CIGR handbook for agricultural engineering. American Society of Agricultural Engineers, St. Joseph, p 374

    Google Scholar 

  32. Phene CJ, Howell TA, Beck RD, Sanders DC (1981) A traveling trickle irrigation system for row crops. In: Irrig association technology conference, pp 66–82

  33. Phene CJ, Howell TA, Sikorski MD (1985) A traveling trickle irrigation system. In: Advances in irrigation, pp 1–49

    Google Scholar 

  34. QGIS Development Team (2018) QGIS Geographic Information System

  35. Rajan N, Maas S, Kellison R et al (2015) Emitter uniformity and application efficiency for centre-pivot irrigation systems. Irrig Drain 64:353–361. https://doi.org/10.1002/ird.1878

    Article  Google Scholar 

  36. Rawlins SL, Hoffman GJW, Merrill SD (1974) Traveling trickle system. In: Proceedings second international drip irrigation conference. San Diego, pp 184–187

  37. Rogers DH, Alam M, Shaw LK (2008) Kansas irrigation trends

  38. Scanlon BR, Faunt CC, Longuevergne L et al (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109:9320–9325. https://doi.org/10.1073/pnas.1200311109

    Article  PubMed  Google Scholar 

  39. Schaible GD, Aillery MP (2017) Challenges for US irrigated agriculture in the face of emerging demands and climate change. In: Ziolkowska JR, Peterson JM (eds) Competition for water resources. Elsevier, Oxford, pp 44–79

    Google Scholar 

  40. Schneider AD (2000) Efficiency and uniformity of the lepa and spray sprinkler methods: a review. Trans ASAE 43:937–944

    Article  Google Scholar 

  41. Schneider AD, Howell TA (2000) Surface runoff due to lepa and spray irrigation of a slowly permeable soil. Trans ASAE 43:1089–1095

    Article  Google Scholar 

  42. Steward DR, Bruss PJ, Yang X et al (2013) Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc Natl Acad Sci USA 110:E3477–E3486. https://doi.org/10.1073/pnas.1220351110

    Article  PubMed  Google Scholar 

  43. Stewart BA, Howell T (2003) Encyclopedia of water science. Marcel Dekker, New York

    Google Scholar 

  44. Stone LR, Klocke NL, Schlegel AJ et al (2011) Equations for drainage component of the field water balance. Appl Eng Agric 27:345–350. https://doi.org/10.13031/2013.37076

    Article  Google Scholar 

  45. Stone KC, Bauer PJ, Sigua GC (2016) Irrigation management using an expert system, soil water potentials, and vegetative indices for spatial applications. Trans ASABE 59:941–948. https://doi.org/10.13031/trans.59.11550

    Article  Google Scholar 

  46. Sutton BH (2016) Infrared aerial thermograpy for use in monitoring plant health and growth

  47. Thokal RT, Mahale DM, Powar AG (2004) Glossary: irrigation, drainage, hydrology and watershed management. Mittal, New Delhi

    Google Scholar 

  48. Veihmeyer FJ, Hendrickson AH (1950) Soil moisture in relation to plant growth. Annu Rev Plant Physiol 1:285–304. https://doi.org/10.1146/annurev.pp.01.060150.001441

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants and donations from: (1) The Foundation for Food and Agricultural Research (Award # 430871); (2) USDA Project no. 2016-68007-25066, through the NIFA Water for Agriculture Challenge Area; (3) Teeter Irrigation and; (4) Netafim-USA. The authors of the paper are grateful to these organisations/companies for their support. This is contribution number 19-055-J of the Kansas Agricultural Experiment Station.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isaya Kisekka.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by E. Scudiero.

Appendices

Appendix 1: Change in LEPA nozzle flow rate with increase in distance from center of pivot

Nozzle # Radius (m) Flow rate (m3/s) Area between circles (m2) Standardized flow rate (m3/s/m2)
1 33.44 4.5989E−05 312 1.4729E−07
2 34.96 4.22727E−05 327 1.29371E−07
3 36.48 0.0000465 341 1.36252E−07
4 38 4.54891E−05 356 1.2785E−07
5 39.52 4.44268E−05 370 1.19967E−07
6 41.04 4.57877E−05 385 1.18977E−07
7 42.56 5.32443E−05 399 1.33321E−07
8 44.08 5.25754E−05 414 1.27027E−07
9 45.6 5.24436E−05 428 1.22413E−07
10 47.12 5.19231E−05 443 1.17225E−07
11 48.64 5.96154E−05 457 1.30318E−07
12 50.16 5.20522E−05 472 1.10284E−07
13 107.92 0.000116899 1024 1.14178E−07
14 109.44 0.000135877 1038 1.30857E−07
15 110.96 0.000127591 1053 1.21183E−07
16 112.48 0.000130781 1067 1.22523E−07
17 114 0.000128374 1082 1.18653E−07
18 115.52 0.000129374 1096 1.17994E−07
19 133.76 0.000156157 1271 1.22888E−07
20 135.28 0.0001674 1285 1.30248E−07
21 136.8 0.000159733 1300 1.22894E−07
22 138.32 0.000171516 1314 1.30501E−07
23 139.84 0.000163477 1329 1.23025E−07
24 141.36 0.000166071 1343 1.23626E−07

Appendix 2: Change in LESA nozzle flow rate with increase in distance from center of pivot

Nozzle # Distance (m) Flow (m3/s) Area between circles Standardized flow rate (m3/m2)
1 25.84 2.84E−05 240 1.18649E−07
2 27.36 2.37E−05 254 9.30592E−08
3 28.88 3.3E−05 269 1.22806E−07
4 30.4 2.84E−05 283 1.00395E−07
5 31.92 2.67E−05 298 8.97681E−08
6 51.68 4.61E−05 487 9.47116E−08
7 53.2 4.95E−05 501 9.87786E−08
8 54.72 5.35E−05 516 1.03676E−07
9 56.24 5.35E−05 530 1.00835E−07
10 57.76 6.07E−05 545 1.1153E−07
11 59.28 5.35E−05 559 9.55972E−08
12 60.8 5.24E−05 574 9.135E−08
13 110.96 0.000148 1053 1.41015E−07
14 112.48 0.000223 1067 2.08645E−07
15 114 0.000178 1082 1.64675E−07
16 115.52 0.000178 1096 1.62494E−07
17 117.04 0.000157 1111 1.41503E−07
18 118.56 0.000167 1125 1.48407E−07
19 120.08 0.000178 1140 1.56284E−07
20 121.6 0.000178 1155 1.54318E−07
21 123.12 0.000167 1169 1.42876E−07
22 124.64 0.000181 1184 1.52566E−07
23 126.16 0.000179 1198 1.49705E−07
24 127.68 0.000191 1213 1.57308E−07
25 129.2 0.000183 1227 1.49267E−07
26 130.72 0.000188 1242 1.51573E−07
27 132.24 0.000179 1256 1.42114E−07

Appendix 3: Calculation of LESA coefficient of uniformity

Span # Can # Distance, S (m) Left Can # Right
Vol (ml) V i S i Si × (Vi − Vp) Vol (ml) V i S i Si × (Vi − Vp)
1 6 24 165 3960 316 57 180 4320 175
7 27 180 4860 50 58 180 4860 197
8 30 220 6600 1255 59 255 7650 2469
9 33 160 5280 599 60 180 5940 241
10 36 190 6840 426 61 165 5940 277
11 39 195 7605 657 62 225 8775 2040
2 12 42 130 5460 2022 63 160 6720 533
13 45 250 11250 3233 64 270 12,150 4379
14 48 230 11,040 2489 65 265 12,720 4430
15 51 250 12,750 3664 66 160 8160 648
16 54 200 10,800 1180 67 170 9180 146
17 57 155 8835 1320 68 140 7980 1864
3 31 99 210 20,790 3153 82 180 17,820 723
32 102 210 21,420 3248 83 160 16,320 1295
33 105 180 18,900 194 84 130 13,650 4483
34 108 170 18,360 881 85 245 26,460 7809
35 111 200 22,200 2425 86 200 22,200 3031
36 114 220 25,080 4770 87 170 19,380 308
37 117 200 23,400 2556 88 135 15,795 4411
38 120 135 16,200 5178 89 140 16,800 3924
4 39 123 165 20,295 1618 90 165 20,295 947
40 126 140 17,640 4807 91 150 18,900 2860
41 129 165 21,285 1697 92 190 24,510 2232
42 132 140 18,480 5036 93 140 18,480 4316
43 135 135 18,225 5826 94 160 21,600 1714

Appendix 4: ADVI for 2016 of corn irrigated with MDI, LESA and LEPA on a center pivot at the southwest research and extension center of Kansas State University, near Garden City Kansas

figurea
figureb

Appendix 5: NDVI for 2016 of corn irrigated with MDI, LESA and LEPA on a center pivot at the southwest research and extension center of Kansas State University, near Garden City Kansas

figurec
figured

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oker, T.E., Kisekka, I., Sheshukov, A.Y. et al. Evaluation of dynamic uniformity and application efficiency of mobile drip irrigation. Irrig Sci 38, 17–35 (2020). https://doi.org/10.1007/s00271-019-00648-0

Download citation