Skip to main content
Log in

A simulation tool for advanced design and management of collective sprinkler-irrigated areas: a study case

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

More than one million hectares have undergone irrigation modernization in Spain during this century. Irrigation modernization to pressurized systems is currently facing challenges derived from increasing electricity prices and decreasing public subsidies. The economic viability of such projects is compromised, and the number of projects is decreasing. Pressurized collective networks are commonly designed and managed using hydraulic simulation tools and probabilistic hypotheses on hydrant use. In this paper, a simulation tool is presented that widens the scope of the analysis by combining hydraulics with agronomy, agrometeorology, solid-set sprinkler irrigation and economics. The CINTEGRAL software simulates the net benefit of the seasonal operation of a collective pressurized irrigation network. The software incorporates an optimization module for the electricity contract associated with the pumping station. CINTEGRAL runs on a time step of a half-hour, and simulates the irrigation season of a variety of crops. The software was applied to analyze the economic benefit of a Water User Association (WUA) under different design and management scenarios (on-demand, network sectoring and dividing the irrigated area in separate networks). In the studied WUA, the network sectoring scenario provided important energy savings (22%) but negatively affected yield by a similar economic magnitude. The division of the area in two independent networks was the most cost-effective scenario. Network topologies, cropping patterns, market prices, irrigation infrastructure, soil conditions and management rules determine the optimum WUA management options. CINTEGRAL is a comprehensive simulation tool designed to help designers and managers guarantee the economic viability of their projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abadia R, Rocamora C, Ruiz A, Puerto H (2008) Energy efficiency in irrigation distribution networks I: theory. Biosys Eng 101(1):21–27

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. FAO Rome, Italy. 147

  • Aliod R, Eizaguerri A, Estrada C (1998) Development and validation of hydraulic modelling tools for pressurised irrigation networks. Hydroinformatics Vladan Babovic and Lars Christian Larsen. Danish Hydraulic Institute, Horsholm, pp 545–552

    Google Scholar 

  • Andrade CLT, Allen RG (1999) Sprinkmod—pressure and discharge simulation model for pressurizes irrigation systems. 1. Model development and description. Irrig Sci 18:141–148

    Article  Google Scholar 

  • Andrade CLT, Wells RD, Allen RG (1999a) Sprinkmod—pressure and discharge simulation model for pressurizes irrigation systems. 2. Case study. Irrig Sci 18:149–156

    Article  Google Scholar 

  • Andrade CLT, Allen RG, Wells RD (1999b) Sprinkmod—pressure and discharge simulation model for pressurizes irrigation systems. 3. Sensitivity to lateral hydraulic parameters and leakage. Irrig Sci 18:157–161

    Article  Google Scholar 

  • Arkley RJ (1963) Relationships between plant growth and transpiration. Hidalgia 34:559–584

    Google Scholar 

  • Bautista-Capetillo C, Salvador R, Burguete J, Montero J, Tarjuelo JM, Zapata N, González J, Playán E (2009) Comparing methodologies for the characterization of water drops emitted by an irrigation sprinkler. Trans ASABE 52(5):1493–1504

    Article  Google Scholar 

  • Burguete J, Playán E, Montero J, Zapata N (2007) Improving drop size and velocity estimates of an optical disdrometer: implications for sprinkler irrigation simulation. Trans ASABE 50(6):2103–2116

    Article  Google Scholar 

  • Carrión P, Tarjuelo JM, Montero J (2001) SIRIAS: a simulation model for sprinkler irrigation i: description of model. Irrig Sci 20:73–84

    Article  Google Scholar 

  • Cavero J, Farré I, Debaeke P, Faci JM (2000) Simulation of maize yield under water stress with the EPICphase and CROPWAT models. Agron J 92(4):679–690

    Article  Google Scholar 

  • Corominas J (2010) Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del agua 17:219–233

    Article  Google Scholar 

  • de Juan JA and Martín de Santa Olalla FJ (1993) Las funciones de producción versus agua. En: F.J. Martín de Santa Olalla, de Juan J.A. (Coord.) Agronomía del Riego. Mundi-Prensa y Universidad de Castilla-La Mancha. Madrid, Spain

  • de Wit CT (1958) Transpiration and Crop Yield. Versl. Landbouk. Onderz, 64. Wageningen, The Netherlands

  • de Wrachien D, Lorenzini G (2006) Modelling jet flow and losses in sprinkler irrigation: overview and perspective of a new approach. Biosys Eng 94(2):297–309

    Article  Google Scholar 

  • Dechmi F, Playán E, Cavero J, Martínez-Cob A, Faci JM (2004a) A coupled crop and solid-set sprinkler simulation model: I. Model development. J Irrig Drain Eng ASCE 130:502–510

    Google Scholar 

  • Dechmi F, Playán E, Cavero J, Martínez-Cob A, Faci JM (2004b) A coupled crop and solid set sprinkler simulation model: II. Model application. J Irrig Drain Eng ASCE 130(6):511–519

    Article  Google Scholar 

  • Doorenbos J, Kassam AH (1979) Yield response to water. FAO Irrigation and Drainage Paper No. 33. Rome, FAO

  • Estrada C, Gonzalez C, Aliod R, Paño J (2009) Improved pressurized pipe network hydraulic solver for applications in irrigation systems. J Irrig Drain Eng ASCE 135(4):421–430

    Article  Google Scholar 

  • Fernandez Garcia I, Rodriguez Diaz JA, Camacho Poyato E, Montesinos P (2013) Optimal operation of pressurized irrigation networks with several supply sources. Water Resour Manag 27:2855–2869

    Article  Google Scholar 

  • Fukui Y, Nakanishi K, Okamura S (1980) Computer evaluation of sprinkler irrigation uniformity. Irrig Sci 2:23–32

    Article  Google Scholar 

  • Hall WA, Butcher WS (1968) Optimal timing of irrigation. J Irrig Drain 94:267–275

    Google Scholar 

  • Jensen ME (1968) Water consumption by agricultural plants. In: Kozlowski J (ed) Water deficits of plant growth. Academic Press, New York

    Google Scholar 

  • Jiménez-Bello MA, Martínez Alzamora F, Bou Soler V, Ayala HJB (2010) Methodology for grouping intakes of pressurised irrigation networks into sectors to minimise energy consumption. Biosyst Eng 105:429–438

    Article  Google Scholar 

  • Khadra R, Lamaddalena N (2006) A simulation model to generate the demand hydrographs in large-scale irrigation systems. Biosyst Eng 93(3):335–346

    Article  Google Scholar 

  • Khadra R, Moreno MA, Awada H, Lamaddalena N (2016) Energy and hydraulic performance-based management of large-scale pressurized irrigation systems. Water Resour Manage 30:3493–3506

    Article  Google Scholar 

  • Kincaid DC (1986) Spraydrop kinetic energy from irrigation sprinklers. Trans ASAE 39:847–853

    Article  Google Scholar 

  • Kincaid DC, Solomon KH, Oliphant JC (1996) Drop size distributions for irrigation sprinklers. Trans ASAE 39:839–845

    Article  Google Scholar 

  • Lamaddalena N, Pereira LS (2007a) Assessing the impact of flow regulators with a pressure-driven performance analysis model. Agric Water Manag 90(1–2):27–35

    Article  Google Scholar 

  • Lamaddalena N, Pereira LS (2007b) Pressure-driven modeling for performance analysis of irrigation systems operating on demand. Agric Water Manag 90(1–2):36–44

    Article  Google Scholar 

  • Lamaddalena N, Fratino U, Daccache A (2007) On-farm sprinkler irrigation performance as affected by the distribution system. Biosyst Eng 96(1):99–109

    Article  Google Scholar 

  • Lecina S, Playán E (2006) A model for the simulation of water flows in irrigation districts: I. Description. J Irrig Drain Div ASCE 132(4):310–321

    Article  Google Scholar 

  • Lecina S, Isidoro D, Playán E, Aragüés R (2010) Irrigation modernization in Spain: effects on water quantity and quality-A conceptual approach. Int J Water Resour Dev 26(2):265–282

    Article  Google Scholar 

  • Marzougui T, Ben Elghali S, Doumenc F, Outbib R (2015) An analysis of energetic cost for an irrigation network in France. ICID 26th Euro Mediterranean Regional Conference and ICID 56th International Executive Council. Innovate to Improve Irrigation Performance. Montpellier, France. 11–16 October 2015

  • Merriam JL, Keller J (1978) Farm irrigation system evaluation: a guide for management. Utah State University, Logan

    Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc B281:277–294

    Article  Google Scholar 

  • Montero J, Tarjuelo JM, Carrión P (2001) Sirias: a simulation model for sprinkler irrigation. II. Calibration and validation of the model. Irrig Sci 20(2):85–98

    Article  Google Scholar 

  • Montero J, Tarjuelo JM, Carrión P (2003) Sprinkler droplet size distribution measured with an optical spectropluviometer. Irrig Sci 22(2):47–56

    Article  Google Scholar 

  • Moreno MA, Córcoles JI, Tarjuelo JM, Ortega JF (2010a) Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosyst Eng 107:349–363

    Article  Google Scholar 

  • Moreno MA, Ortega JF, Córcoles JI, Martínez A, Tarjuelo JM (2010b) Energy analysis of irrigation delivery systems: monitoring and evaluation of proposed measures for improving energy efficiency. Irrig Sci 28:445–460

    Article  Google Scholar 

  • Navarro Navajas JM, Montesinos P, Camacho Poyato E, Rodríguez Díaz JA (2012) Impacts of irrigation network sectoring as an energy saving measure on olive grove production. J Environ Manag 111:1–9

    Article  CAS  Google Scholar 

  • Nogüés J (2002) Mapa de suelos (E 1/25000) de Barbués y Torres de Barbués. Aplicación para modernización de regadíos. Consejo de Protección de la Naturaleza de Aragón. Zaragoza, España

  • Orgaz F (1998) Crop responses to irrigation and salinity. Advanced course: sustainable agriculture: water management for agricultural production in semi-arid zones. CIHEAM, ICARDA, March 9–20th. Zaragoza, Spain

  • Ortega JF, de Juan JA, Tarjuelo JM, López E (2004) MOPECO: an economic optimization model for irrigation water management. Irrig Sci 23:61–75

    Article  Google Scholar 

  • Ortiz JN, Tarjuelo JM, de Juan JA (2009) Characterisation of evaporation and drift losses with centre-pivots. Agric Water Manage 96:1541–1546

    Article  Google Scholar 

  • Pereira LS, Allen RG (1999) Crop water requirements. In: van Lier NH, Pereira LS, Steiner FR (eds) CIGR handbook of agricultural engineering, vol I., Land and water engineeringASAE and CIGR, St. Joseph, pp 213–262

    Google Scholar 

  • Playán E, Mateos L (2006) Modernization and optimization of irrigation systems to increase water productivity. Agric Water Manage 80(1–3):100–116

    Article  Google Scholar 

  • Playán E, Salvador R, Faci JM, Zapata N, Martínez-Cob A, Sánchez I (2005) Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals. Agric Water Manage 76(3):139–159

    Article  Google Scholar 

  • Playán E, Zapata N, Faci JM, Tolosa D, Pelegrín J, Salvador R, Lafita A, Sánchez I (2006) Assessing sprinkler irrigation uniformity using a ballistic simulation model. Agric Water Manage 84(1–2):89–100

    Article  Google Scholar 

  • Reca J, Martinez J (2006) Genetic algorithms for the design of looped irrigation water distribution network. Water Resour Res 42(5):W05416

    Article  Google Scholar 

  • Rocamora C, Vera J, Abadia R (2013) Strategy for efficient energy management to solve energy problems in modernized irrigation: analysis of the Spanish case. Irrig Sci 31(5):1139–1158

    Article  Google Scholar 

  • Rodríguez Díaz JA, López Luque R, Carrillo Cobo MT, Montesinos P, Camacho Poyato E (2009) Exploring energy saving scenarios for on demand pressurised irrigation networks. Biosyst Eng 104:552–561

    Article  Google Scholar 

  • Rodríguez Díaz JA, Camacho Poyato E, Blanco Pérez M (2011) Evaluation of water and energy use in pressurized irrigation networks in southern Spain. J Irrig Drain Eng 137:644–650

    Article  Google Scholar 

  • Rossman LA (2000) EPANET 2: users manual. US Environ Prot Agency,Washington, D.C. EPA/600/R-00/057, 2000

  • Rossman LA, Clark RM, Grayman WM (1994) Modeling chlorine residuals in drinking-water distribution-systems. J Environ Eng ASCE 120(4):803–820

    Article  CAS  Google Scholar 

  • Salvador R, Playán E, Bautista C, Burguete J, Zapata N (2009) A photographic methodology for drop characterization in agricultural sprinklers. Irrig Sci 27:307–317

    Article  Google Scholar 

  • Smith M (1992) CROPWAT—A computer program for irrigation planning and management. FAO Irrigation and Drainage Paper No. 46. FAO, Rome, Italy

  • Stewart JI, Hagan RM, Pruitt WO, Kanks RJ, Riley JP, Danilson RE, Franklin WT and Jackson EB (1977) Optimizing crop production though control of water and salinity levels. Utah Water Res. Lab. PWRG 151-1, Logan, Utah

  • Sudar RD, Saxton KE, Spooner RG (1981) A predictive model of water stress in corn and soybean. Trans ASAE 24:97–102

    Article  Google Scholar 

  • Tarjuelo JM, de Juan JA (1999) Crop water management. In: van Lier NH, Pereira LS, Steiner FR (eds) CIGR handbook of agricultural engineering, vol I., Land and water engineeringASAE and CIGR, St. Joseph, pp 380–429

    Google Scholar 

  • Tarjuelo JM, Rodríguez-Díaz JA, Abadía R, Camacho E, Rocamora C, Moreno MA (2015) Efficient water and energy use in irrigation modernization: lessons from Spanish case studies. Agric Water Manage 162:67–77

    Article  Google Scholar 

  • Vaux HJ, Pruitt WO (1983) Crop-water production functions. In: Hillel D (ed) Advances in irrigation, vol 2. Academic Press, New York, pp 61–97

    Google Scholar 

  • Zapata N, Playan E, Skhiri A, Burguete J (2009) Simulation of a collective solid-set sprinkler irrigation controller for optimum water productivity. J Irrig Drain Eng ASCE 135(1):13–24

    Article  Google Scholar 

  • Zapata N, Salvador R, Cavero J, Lecina S, López C, Mantero N, Anadón R, Playán E (2013) Field test of an automatic controller for solid-set sprinkler irrigation. Irrig Sci 31(5):1237–1249

    Article  Google Scholar 

  • Zazueta FS, Smajstrla AG, Haman DZ (1989) Computer-aided design of landscape irrigation systems. Appl Agric Res 4:280–284

    Google Scholar 

Download references

Acknowledgements

This paper applies the “first-last-author-emphasis” approach for the sequence of authors. Research was funded by the Ministry of Economy and Competitiveness of the Spanish Government (Plan Estatal de I + D+i) through Grant AGL2013-48728-C2-1-R. The International Center for Advanced Mediterranean Agronomic Studies of Zaragoza (CIHEAM-Zaragoza) provided an M. Sc. scholarship to Mr. El Habib El Malki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zapata.

Additional information

Communicated by G. Merkley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapata, N., El Malki, E.H., Latorre, B. et al. A simulation tool for advanced design and management of collective sprinkler-irrigated areas: a study case. Irrig Sci 35, 327–345 (2017). https://doi.org/10.1007/s00271-017-0547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-017-0547-7

Keywords

Navigation