Skip to main content
Log in

Reference evapotranspiration estimation without local climatic data

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

The Penman–Monteith equation for reference evapotranspiration (ETo) estimation cannot be applied in many situations, because climatic records are totally or partially not available or reliable. In these cases, empirical equations that rely on few climatic variables are necessary. Nevertheless, the uncertainty associated with empirical model estimations is often high. Thus, the improvement of methods relying on few climatic inputs as well as the development of emergency estimation tools that demand no local climatic records turns into a task of great relevance. The present study describes different approaches based on multiple linear regression, simple regression and artificial neural networks (ANNs) to deal with ETo estimation exclusively from exogenous records from secondary stations. This cross-station approach is based on a continental characterization of the study region, which enables the selection and hierarchization of the most suitable ancillary data supplier stations. This procedure is compared with different traditional and cross-station approaches, including methodologies that also consider local temperature inputs. The proposed methods are also evaluated as gap infilling procedures and compared with a simple methodology, the window averaging. The artificial neural network and the multiple linear regression approaches present very similar performance accuracies, considerably higher than simple regression and traditional temperature-based approaches. The proposed input combinations allow similar performance accuracies as ANN models relying on exogenous ETo records and local temperature measurements. The cross-station multiple linear regression procedure is recommended due to its higher simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abudu S, Bawazir AS, King JP (2010) Infilling missing daily evapotranspiration data using neural networks. J Irrig Drain Eng. doi:10.1061/(ASCE)IR.1943-4774.0000197

  • Alavi N, Warland JS, Berg AA (2006) Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agric For Meteorol 141(1):57–66

    Article  Google Scholar 

  • Al-Ghobari HM (2000) Estimation of reference evapotranspiration for southern region of Saudi Arabia. Irrig Sci 19(2):81–86

    Article  Google Scholar 

  • Allen RG (1996) Assessing integrity of weather data for reference evapotranspiration estimation. J Irrig Drain Eng 122(2):97–106

    Article  Google Scholar 

  • Allen RG, Smith M, Perrier A, Pereira LS (1994) An update for the calculation of reference evapotranspiration. ICID Bull 43(2):35–92

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO Irrigation and Drainage, paper 56. FAO, Rome

  • ASCE Task Committee (2000) Artificial neural networks in hydrology. II: Hydrological applications. J Hydrol Eng ASCE 5(2):124–137

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO irrigation and drainage paper 56. FAO, Rome

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001a) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107(1):43–69

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001b) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107(1):71–77

    Article  Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt Algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  PubMed  CAS  Google Scholar 

  • Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, Boston

    Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from ambient air temperature. Appl Eng Agric 1(2):96–99

    Google Scholar 

  • Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey

    Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  • Hui D, Wan S, Su B, Katul G, Monson R, Luo Y (2004) Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric For Meteorol 121(1–2):93–111

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practices 70. American Society of Civil Engineers, New York

    Google Scholar 

  • Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of ETo under nonideal conditions. J Irrig Drain Eng 123(5):394–400

    Article  Google Scholar 

  • Khalil M, Panu US, Lennox WC (2001) groups and neural networks based streamflow data infilling procedures. J Hydrol 241(3–4):153–176

    Article  Google Scholar 

  • Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317

    Article  Google Scholar 

  • Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260

    Article  Google Scholar 

  • Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105

    Article  Google Scholar 

  • Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934

    Article  Google Scholar 

  • Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–2460

    Google Scholar 

  • Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430

    Article  Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233

    Article  Google Scholar 

  • Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545

    Article  Google Scholar 

  • Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95(5):553–565

    Article  Google Scholar 

  • Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334

    Article  Google Scholar 

  • Llasat MC, Snyder RL (1998) Data error effects on net radiation and evapotranspiration estimation. Agric For Meteorol 91(3–4):209–221

    Article  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  • Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Water Manag 97(7):939–955

    Article  Google Scholar 

  • Martí P, Gasque M, Royuela A (2010a) Discussion of ‘forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):440–444

    Article  Google Scholar 

  • Martí P, Royuela A, Manzano J, Palau G (2010b) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174

    Article  Google Scholar 

  • Martí P, Royuela A, Manzano J (2010c) Assessment of a 4-input artificial neural network for ETo estimation model through data set scanning procedures. Irrig Sci. doi:10.1007/s00271-010-0224-6

  • Martínez-Cob A (1996) Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J Hydrol 174(1–2):19–35

    Article  Google Scholar 

  • Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick

    Google Scholar 

  • Prechelt L (1998) Automatic early stopping using cross validation: quantifying criteria. Neural Netw 11(4):761–767

    Article  PubMed  Google Scholar 

  • Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259

    Article  Google Scholar 

  • Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39

    Article  Google Scholar 

  • Sarle WS (1995) Stopped training and other remedies for overfitting. In: Proceedings of the 27th symposium on the interface of computing science statistics, Pittsburgh, pp 352–360

  • Sharma ML (1985) Estimating evapotranspiration. In: Hillel D (ed) Advances in irrigation, vol 3. Academic Press, London

  • Stöckle CO, Kjelgaard J, Bellochi G (2004) Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration. Irrig Sci 23:39–46

    Article  Google Scholar 

  • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218

    Article  Google Scholar 

  • Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng 131(1):73–84

    Article  Google Scholar 

  • Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323

    Article  Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449

    Article  Google Scholar 

  • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457

    Article  Google Scholar 

  • Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Martí.

Additional information

Communicated by S. Ortega-Farias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martí, P., González-Altozano, P. & Gasque, M. Reference evapotranspiration estimation without local climatic data. Irrig Sci 29, 479–495 (2011). https://doi.org/10.1007/s00271-010-0243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-010-0243-3

Keywords

Navigation