Skip to main content
Log in

Real-time prediction of soil infiltration characteristics for the management of furrow irrigation

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

The spatial and temporal variations commonly found in the infiltration characteristic for surface-irrigated fields are a major physical constraint to achieve higher irrigation application efficiencies. Substantial work has been directed towards developing methods to estimate the infiltration characteristics of soil from irrigation advance data. However, none of the existing methods are entirely suitable for use in real-time control. The greatest limitation is that they are data intensive. A new method that uses a model infiltration curve (MIC) is proposed. In this method a scaling process is used to reduce the amount of data required to predict the infiltration characteristics for each furrow and each irrigation event for a whole field. Data from 44 furrow irrigation events from two different fields were used to evaluate the proposed method. Infiltration characteristics calculated using the proposed method were compared to values calculated from the full advance data using the INFILT computer model. The infiltration curves calculated by the proposed method were of similar shape to the INFILT curves and gave similar values for cumulative infiltration up to the irrigation advance time for each furrow. More importantly the statistical properties of the two sets of infiltration characteristics were similar. This suggests that they would return equivalent estimates of irrigation performance for the two fields and that the proposed method could be suitable for use in real-time control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Azevedo CAV, Merkley GP, Walker WR (1996) Surface irrigation real-time optimization model (SIRTOM). In: Proceedings of computers in agriculture conference, Cancun Mexico, 11–14 June 1996. ASAE, pp 872–884

  • Camecho E, Lucena CP, Canas JR, Alcaide M (1997) Model for management and control of furrow irrigation in real-time. J Irrig Drain Eng 123(4):264–269

    Article  Google Scholar 

  • Dalton P, Raine SR, Broadfoot K (2001) Best management practices for maximising whole farm irrigation efficiency in the Australian cotton industry. Final report to the Cotton Research and Development Corporation, National Centre for Engineering in Agriculture Report 179707/2, USQ, Toowoomba

  • Elliott RL, Walker WR (1982) Field evaluation of furrow infiltration and advance functions. Trans ASAE 25(2):396–400

    Google Scholar 

  • Gillies MH, Smith RJ (2005) Infiltration parameters from surface irrigation advance and runoff data. Irrig Sci 24(1):25–35

    Article  Google Scholar 

  • Khatri KL, Smith RJ (2005) Evaluation of methods for determining infiltration parameters from irrigation advance data. Irrig Drain 54:467–482

    Article  Google Scholar 

  • McClymont DJ, Smith RJ (1996) Infiltration parameters from optimization on furrow irrigation advance data. Irrig Sci 17(1):15–22

    Article  Google Scholar 

  • Nachabe MH (1996) Microscopic capillary length, sorptivity, and shape factor in modelling the infiltration rate. Soil Sci Soc Am J 60(4):957–961

    Article  CAS  Google Scholar 

  • Oyonarte NA, Mateos L, Palomo MJ (2002) Infiltration variability in furrow irrigation. J Irrig Drain Eng 128(1):26–33

    Article  Google Scholar 

  • Raine SR, Bakker DM (1996) Increased furrow irrigation efficiency through better design and management of cane fields. In: Proceedings of Australian Society of Sugercane Technologists, pp 119–124

  • Raine SR, McClymont DJ, Smith RJ (1997) The development of guidelines for surface irrigation in areas with variable infiltration. In: Proceedings of Australian Society of Sugercane Technologists, pp 293–301

  • Sepaskhah AR, Afshar-Chamanabad H (2002) Determination of infiltration rate of every-other furrow irrigation. Biosyst Eng 82(4):479–483

    Article  Google Scholar 

  • Shafique MS, Skogerboe GV (1983) Impact of seasonal infiltration function variation on furrow irrigation performance. In: Advances in infiltration, proceedings of national conference on advances in infiltration. ASAE, St. Joseph, pp 292–301

  • Smith RJ, Raine SR, Minkovich J (2005) Irrigation application efficiency and deep drainage potential under surface irrigated cotton. Agric Water Manag 71(2):117–130

    Article  Google Scholar 

  • Warrick AW, Hussein AA (1993) Scaling of Richards equation for infiltration and drainage. Soil Sci Soc Am J 57:15–18

    Article  Google Scholar 

  • Warrick AW, Lomen DO, Yates SR (1985) A generalised solution to infiltration. Soil Sci Soc Am J 49:34–38

    Article  Google Scholar 

  • Wu L, Pan L (1997) A generalised solution to infiltration from single ring infiltrometers by scaling. Soil Sci Soc Am J 61:1318–1322

    Article  CAS  Google Scholar 

  • Youngs EG, Price RI (1981) Scaling of infiltration behaviour in dissimilar porous materials. Water Resour Res 17:1065–1070

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanya L. Khatri.

Additional information

Communicated by T. Trooien

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khatri, K.L., Smith, R.J. Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrig Sci 25, 33–43 (2006). https://doi.org/10.1007/s00271-006-0032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-006-0032-1

Keywords

Navigation