Skip to main content
Log in

A two-dimensional water balance model for micro-irrigated hedgerow tree crops

  • Micro-irrigation: Advances in system design and management
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Distribution of water and energy is non-uniform in widely spaced, micro-irrigated, hedgerow crops. For accurate water use predictions, this two-dimensional variation in the energy and water balance must be adequately accounted for. To this end, a user-friendly, two-dimensional, mechanistic soil water balance model (SWB-2D), has been developed. Energy is partitioned at the surface depending on solar orientation, row direction and canopy size, shape and leaf area density. Water is assumed to be distributed uniformly at the surface in the case of rainfall, whilst micro-irrigation only wets a limited portion of the field. Crop water uptake is calculated as a function of evaporative demand, soil water potential and root density. Evaporation is also calculated as being either limited by available energy or by water supply. Water is redistributed in the soil in two dimensions with a finite difference solution to the Richards’ equation. A field trial was set up to test the 2-D soil water balance model in a citrus orchard at Syferkuil (Pietersburg, South Africa). Model predictions generally compared well to actual soil water content measured with time domain reflectometry probes. Scenario modelling and analyses were carried out by varying some input parameters (row orientation, canopy width, wetted diameter and fraction of roots in the wetted volume of soil) and observing variations in the output of the soil water balance. The model holds potential for improving irrigation scheduling and efficiency through increased understanding and accuracy in estimating soil water reserves, since it accounts for the differing conditions in the under-tree irrigated strip and inter-row rainfed areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. (Irrigation and drainage paper no. 56) FAO, Rome

    Google Scholar 

  • Annandale JG, Benadé N, Jovanovic NZ, Steyn JM, Du Sautoy N (1999) Facilitating irrigation scheduling by means of the soil water balance model. (Water research commission report no. 753/1/99) Pretoria, South Africa

  • Annandale JG, Campbell GS, Olivier FC, Jovanovic NZ (2000) Predicting crop water uptake under full and deficit irrigation: an example using pea (Pisum sativum L. cv. Puget). Irrig Sci 19:65–72

    Article  Google Scholar 

  • Annandale JG, Jovanovic NZ, Mpandeli NS, Lobit P, Du Sautoy N, Benadé N (2001) Two-dimensional energy interception and water balance model for hedgerow tree crops. (Water research commission report no. K5/945) Pretoria, South Africa

  • Bennie ATP, Coetzee MJ, Antwerpen R van, Rensburg LD van, Burger R du T (1988) ‘n Waterbalansmodel vir besproeiing gebaseer op profielwatervoorsieningstempo en gewaswaterbehoeftes (in Afrikaans). (Water research commission report no. 144/1/88) Pretoria, South Africa

  • CAMASE (1995) Newsletter of Agro-ecosystems modelling, extra edition. AB-DLO, Wageningen, The Netherlands

  • Campbell GS (1977) An Introduction to environmental biophysics. Springer, Berlin Heidelberg New York

  • Campbell GS (1985) Soil physics with Basic. Elsevier Science, Amsterdam

  • Campbell GS, Diaz R (1988) Simplified soil–water balance models to predict crop transpiration. In: Bidinger FR, Johansen C (eds) Drought research priorities for the dryland tropics. ICRISAT, India, pp 15–26

  • Campbell GS, Stockle CO (1993) Prediction and simulation of water use in agricultural systems. In: International crop science, vol I. Crop Science Society of America, Madison, Wis., USA, pp 67–73

  • Charles-Edwards DA, Thornley HM (1973) Light interception by an isolated plant: a simple model. Ann Bot 37:919–928

    Google Scholar 

  • Charles-Edwards DA, Thorpe MR (1976) Interception of diffuse and direct-beam radiation by a hedgerow apple orchard. Ann Bot 40:603–613

    Google Scholar 

  • Crosby CT (1996) SAPWAT 1.0: a computer program for estimating irrigation requirements in Southern Africa. (Water research commission report no. 379/1/96) Pretoria, South Africa

  • FAO (1998) World reference base for soil resources. (World soil resources report no. 84) FAO, Rome

  • Hodges T, Ritchie JT (1991) The CERES–wheat phenology model. In: Hodges T (ed) Predicting crop phenology. CRC, Boca Raton, Fla.

  • International Ground Water Modeling Center (1996) Hydrus-2D CD-ROM. Colorado School of Mines, Golden, Colo., USA

  • Knight JH (1992) Sensitivity of time domain reflectometry measurements to lateral variations in soil water content. Water Resour Res 28(9):2345–2352

    Google Scholar 

  • Redinger GJ, Campbell GS, Saxton KE, Papendick RI (1984) Infiltration rate of slot mulches: measurement and numerical simulation. Soil Sci Soc Am J 48:982–986

    Google Scholar 

  • Ross PJ, Bristow KL (1990) Simulating water movement in layered and gradational soils using the Kirchhoff transform. Soil Sci Soc Am J 54:1519–1524

    Google Scholar 

  • Singels A, De Jager JM (1991a) Refinement and validation of PUTU wheat crop growth model. 1. Phenology. S Afr J Plant Soil 8(2):59–66

    Google Scholar 

  • Singels A, De Jager JM (1991b) Refinement and validation of PUTU wheat crop growth model. 2. Leaf area expansion. S Afr J Plant Soil 8(2):67–72

    Google Scholar 

  • Singels A, De Jager JM (1991c) Refinement and validation of PUTU wheat crop growth model. 3. Grain growth. S Afr J Plant Soil 8(2):73–77

    Google Scholar 

  • Smith M (1992) CROPWAT: a computer program for irrigation planning and management. (FAO irrigation and drainage paper no. 46) FAO, Rome

  • Tanner CB, Sinclair TR (1983) Efficient water use in crop production: research or re-search? In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production. ASA, CSSA and SSSA, Madison, Wis., USA

Download references

Acknowledgement

The authors acknowledge funding from the Water Research Commission (Pretoria, South Africa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Annandale.

Additional information

Communicated by K. Bristow

Appendix

Appendix

Finite difference flux equations and derivatives

In the finite difference flux equations, positive values represent fluxes into the control volume:

$$ {\text{UR}}x = \frac{{{\left( {\Phi {\text{lr}}_{{i - 1,j}} - \Phi {\text{ll}}_{{i - 1,j}} } \right)}\;{\left( {Z_{i} - Z_{{i - 1}} } \right)}}} {{2{\left( {X_{{j + 1}} - X_{j} } \right)}}} $$
(A1)
$$ {\text{LR}}x = \frac{{{\left( {\Phi {\text{ur}}_{{i,j}} - \Phi {\text{ul}}_{{i,j}} } \right)}\;{\left( {Z_{{i + 1}} - Z_{i} } \right)}}} {{2{\left( {X_{{j + 1}} - X_{j} } \right)}}} $$
(A2)
$$ {\text{UL}}x = \frac{{{\left( {\Phi {\text{ll}}_{{i - 1,j - 1}} - \Phi {\text{lr}}_{{i - 1,j - 1}} } \right)}{\left( {Z_{i} - Z_{{i - 1}} } \right)}}} {{2{\left( {X_{j} - X_{{j - 1}} } \right)}}} $$
(A3)
$$ {\text{LL}}x = \frac{{{\left( {\Phi {\text{ul}}_{{i,j - 1}} - \Phi {\text{ur}}_{{i,j - 1}} } \right)}\;{\left( {Z_{{i + 1}} - Z_{i} } \right)}}} {{2{\left( {X_{j} - X_{{j - 1}} } \right)}}} $$
(A4)
$$ {\text{UR}}z = \frac{{{\left( {\Phi {\text{ul}}_{{i - 1,j}} - \Phi {\text{ll}}_{{i - 1,j}} } \right)}\;{\left( {X_{{j + 1}} - X_{j} } \right)}}} {{2{\left( {Z_{i} - Z_{{i - 1}} } \right)}}}\; + \;\frac{{g\begin{array}{*{20}c} {{}} \\ \end{array} K{\text{ul}}_{{i - 1,j}} \;{\left( {X_{{j + 1}} - X_{j} } \right)}}} {2} $$
(A5)
$$ {\text{LR}}z = \frac{{{\left( {\Phi {\text{ll}}_{{i,j}} - \Phi {\text{ul}}_{{i,j}} } \right)}\;{\left( {X_{{j + 1}} - X_{j} } \right)}}} {{2{\left( {Z_{{i + 1}} - Z_{i} } \right)}}}\begin{array}{*{20}c} {{}} \\ \end{array} - \begin{array}{*{20}c} {{}} \\ \end{array} \frac{{g\begin{array}{*{20}c} {{}} \\ \end{array} K{\text{ul}}_{{i,j}} \;{\left( {X_{{j + 1}} - X_{j} } \right)}}} {2} $$
(A6)
$$ {\text{UL}}z = \frac{{{\left( {\Phi {\text{ur}}_{{i - 1,j - 1}} - \Phi {\text{lr}}_{{i - 1,j - 1}} } \right)}\;{\left( {X_{j} - X_{{j - 1}} } \right)}}} {{2{\left( {Z_{i} - Z_{{i - 1}} } \right)}}}\begin{array}{*{20}c} {{}} \\ \end{array} + \begin{array}{*{20}c} {{}} \\ \end{array} \frac{{g\begin{array}{*{20}c} {{}} \\ \end{array} K{\text{ur}}_{{i - 1,j - 1}} \;{\left( {X_{j} - X_{{j - 1}} } \right)}}} {2} $$
(A7)
$$ {\text{LL}}z = \frac{{{\left( {\Phi {\text{lr}}_{{i,j - 1}} - \Phi {\text{ur}}_{{i,j - 1}} } \right)}\;{\left( {X_{j} - X_{{j - 1}} } \right)}}} {{2{\left( {Z_{{i + 1}} - Z_{i} } \right)}}}\begin{array}{*{20}c} {{}} \\ \end{array} - \begin{array}{*{20}c} {{}} \\ \end{array} \frac{{g\begin{array}{*{20}c} {{}} \\ \end{array} K{\text{ur}}_{{i,j - 1}} {\left( {X_{j} - X_{{j - 1}} } \right)}}} {2} $$
(A8)

Note that vertical fluxes include gravitational components.

The derivatives of the flux equations and storage term are:

$$ \frac{{\partial {\text{UR}}x}} {{\partial \psi _{{i,j}} }} = \frac{{ - K{\text{ll}}_{{i - 1,j}} {\left( {Z_{i} - Z_{{i - 1}} } \right)}}} {{2{\left( {X_{{j + 1}} - X_{j} } \right)}}} $$
(A9)
$$ \frac{{\partial {\text{LR}}x}} {{\partial \psi _{{i,j}} }} = \frac{{ - K{\text{ul}}_{{i,j}} {\left( {Z_{{i + 1}} - Z_{i} } \right)}}} {{2{\left( {X_{{j + 1}} - X_{j} } \right)}}} $$
(A10)
$$ \frac{{\partial {\text{UL}}x}} {{\partial \psi _{{i,j}} }} = \frac{{ - K{\text{lr}}_{{i - 1,j - 1}} {\left( {Z_{i} - Z_{{i - 1}} } \right)}}} {{2{\left( {X_{j} - X_{{j - 1}} } \right)}}} $$
(A11)
$$ \frac{{\partial {\text{LL}}x}} {{\partial \psi _{{i,j}} }} = \frac{{ - K{\text{ur}}_{{i,j - 1}} {\left( {Z_{{i + 1}} - Z_{i} } \right)}}} {{2{\left( {X_{j} - X_{{j - 1}} } \right)}}} $$
(A12)
$$ \frac{{\partial {\text{UR}}z}} {{\partial \psi _{{i,j}} }} = \frac{{ - K{\text{ll}}_{{i - 1,j}} {\left( {X_{{j + 1}} - X_{j} } \right)}}} {{2{\left( {Z_{i} - Z_{{i - 1}} } \right)}}} $$
(A13)
$$ \frac{{\partial {\text{LR}}z}} {{\partial \psi _{{i,j}} }} = \frac{{ - K{\text{ul}}_{{i,j}} {\left( {X_{{j + 1}} - X_{j} } \right)}}} {{2{\left( {Z_{{i + 1}} - Z_{i} } \right)}}} - \frac{{g{\left( {X_{{j + 1}} - X_{j} } \right)}}} {2}\begin{array}{*{20}c} {{}} \\ \end{array} \frac{{\partial K{\text{ul}}_{{i,j}} }} {{\partial \psi _{{i,j}} }} $$
(A14)
$$ \frac{{\partial {\text{UL}}z}} {{\partial \psi _{{i,j}} }} = \frac{{ - K{\text{lr}}_{{i - 1,j - 1}} {\left( {X_{j} - X_{{j - 1}} } \right)}}} {{2{\left( {Z_{i} - Z_{{i - 1}} } \right)}}} $$
(A15)
$$ \frac{{\partial {\text{LL}}z}} {{\partial \psi _{{i,j}} }} = \frac{{ - K{\text{ur}}_{{i,j - 1}} {\left( {X_{j} - X_{{j - 1}} } \right)}}} {{2{\left( {Z_{{i + 1}} - Z_{i} } \right)}}} - \frac{{g{\left( {X_{j} - X_{{j - 1}} } \right)}}} {2}\begin{array}{*{20}c} {{}} \\ \end{array} \frac{{\partial K{\text{ur}}_{{i,j - 1}} }} {{\partial \psi _{{i,j}} }} $$
(A16)
$$ \frac{{\partial S}} {{\partial \psi _{{i,j}} }} = \rho _{w} \frac{{\partial \theta ^{{t + \Delta t}}_{{i,j}} }} {{\partial \psi _{{i,j}} }}{\left( {\frac{{{\left( {X_{{j + 1}} - X_{{j - 1}} } \right)}{\left( {Z_{{i + 1}} - Z_{{i - 1}} } \right)}}} {{4\Delta t}}} \right)} $$
(A17)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annandale, J.G., Jovanovic, N.Z., Campbell, G.S. et al. A two-dimensional water balance model for micro-irrigated hedgerow tree crops. Irrig Sci 22, 157–170 (2003). https://doi.org/10.1007/s00271-003-0081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-003-0081-7

Keywords

Navigation