Skip to main content
Log in

Combination of Doxorubicin and Antiangiogenic Agents in Drug-Eluting Beads: In Vitro Loading and Release Dynamics in View of a Novel Therapeutic Approach for Hepatocellular Carcinoma

  • Laboratory Investigation
  • Interventional Oncology
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Antiangiogenic agents have been used for many years as a first-line systemic treatment for advanced HCC. Embolization with cytostatic drugs on the other hand is the first-line treatment for intermediate HCC. The two types of drugs have not been combined for intraarterial delivery yet. The loading and release dynamics and the in vitro effect of their combination are tested in this experimental study.

Materials and Methods

Drug-eluting beads were loaded with doxorubicin, sunitinib and sunitinib analogue piperazine (SAP) alone and with their combinations. Diameter change, loading, release, and effect in cellular proliferation were assessed.

Results

The average microsphere diameter after loading was 473.7 µm (μm) for Doxorubicin, 388.4 μm for Sunitinib, 515.5 μm for SAP, 414.8 μm for the combination Doxorubicin/Sunitinib and 468.8 μm for the combination Doxorubicin /SAP. Drug release in 0.9% NaCl was 10% for Doxorubicin, 49% for Sunitinib, 25% for SAP, 20%/18% for the combination Doxorubicin/Sunitinib, and 18%/23% for the combination Doxorubicin/SAP whereas in human plasma it was 56%, 27%, 13%, 76%/63% and 62%/15%, respectively. The mean concentration of Doxorubicin that led to inhibition of 50% of cellular proliferation in an HCC Huh7 cell line was 163.1 nM (nM), for Sunitinib 10.3 micromolar (μΜ), for SAP 16.7 μΜ, for Doxorubicin/Sunitinib 222.4 nM and for Doxorubicin/SAP 275 nM.

Conclusions

Doxorubicin may be combined with antiangiogenic drugs with satisfactory in vitro loading and release outcomes and effect on cellular lines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

SAP:

Sunitinib Analogue Piperazine

μM:

Micromolar

nM:

Nanomolar

μm:

Micrometres

nm:

Nanometres

TACE:

Transarterial chemoembolization

TKIs:

Tyrosine kinase inhibitors

HPLC:

High-performance liquid chromatography

References

  1. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.

    Article  PubMed  Google Scholar 

  2. European Association for Study of Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur J Cancer. 2012;48(5):599–641.

    Article  Google Scholar 

  3. Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76(3):681–93. https://doi.org/10.1016/j.jhep.2021.11.018.

    Article  PubMed  Google Scholar 

  4. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.2018.03.019.

    Article  Google Scholar 

  5. Llovet JM, Real MI, Montaña X, et al. Barcelona Liver Cancer Group. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–9.

    Article  PubMed  Google Scholar 

  6. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37(2):429–42.

    Article  CAS  PubMed  Google Scholar 

  7. Varela M, Real MI, Burrel M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474–81.

    Article  CAS  PubMed  Google Scholar 

  8. Lencioni R, de Baere T, Burrel M, et al. Transcatheter treatment of hepatocellular carcinoma with Doxorubicin-loaded DC bead (DEBDOX): technical recommendations. Cardiovasc Interv Radiol. 2012;35(5):980–5.

    Article  Google Scholar 

  9. Xie ZB, Wang XB, Peng YC, et al. Systematic review comparing the safety and efficacy of conventional and drug-eluting bead transarterial chemoembolization for inoperable hepatocellular carcinoma. Hepatol Res. 2015;45:190–200.

    Article  CAS  PubMed  Google Scholar 

  10. Sacco R, Bargellini I, Bertini M, et al. Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol JVIR. 2011;22:1545–52.

    Article  PubMed  Google Scholar 

  11. Golfieri R, Giampalma E, Renzulli M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer. 2014;111:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malagari K, Pomoni M, Moschouris H, et al. Chemoembolization with doxorubicin-eluting beads for unresectable hepatocellular carcinoma: five-year survival analysis. Cardiovasc Interv Radiol. 2012;35:1119–28.

    Article  Google Scholar 

  13. Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Interv Radiol. 2010;33:41–52.

    Article  Google Scholar 

  14. Cersosimo RJ. Systemic targeted and immunotherapy for advanced hepatocellular carcinoma. Am J Health Syst Pharm. 2021;78:187–202.

    Article  PubMed  Google Scholar 

  15. Contratto M, Wu J. Targeted therapy or immunotherapy? Optimal treatment in hepatocellular carcinoma. World J Gastrointest Oncol. 2018;10:108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–73.

    Article  CAS  PubMed  Google Scholar 

  17. Yau T, Park W, Finn RS, et al. CheckMate 459: a randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann Oncol. 2019;30:v874-V875. https://doi.org/10.1093/annonc/mdz394.029.

    Article  Google Scholar 

  18. Finn S, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  19. A Global Study to Evaluate Transarterial Chemoembolization (TACE) in Combination With Durvalumab and Bevacizumab Therapy in Patients With Locoregional Hepatocellular Carcinoma (EMERALD-1). https://clinicaltrials.gov/ct2/show/NCT03778957.

  20. Nivolumab in combination with TACE/TAE for patients with intermediate stage HCC (TACE-3). https://clinicaltrials.gov/ct2/show/NCT04268888.

  21. Safety and efficacy of Lenvatinib (E7080/MK-7902) With Pembrolizumab (MK-3475) in combination with transarterial chemoembolization (TACE) in participants with incurable/non-metastatic hepatocellular carcinoma (MK-7902-012/E7080-G000-318/LEAP-012). https://clinicaltrials.gov/ct2/show/NCT04246177.

  22. Fuchs K, Bize PE, Dormond O, et al. Drug-eluting beads loaded with antiangiogenic agents for chemoembolization: in vitro sunitinib loading and release and in vivo pharmacokinetics in an animal model. J Vasc Interv Radiol. 2014;25(3):379–87.

    Article  PubMed  Google Scholar 

  23. Argyros O, Karampelas T, Varela A, et al. Targeting of the breast cancer microenvironment with a potent and linkable oxindole based antiangiogenic small molecule. Oncotarget. 2017;8(23):37250–62.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jordan O, Denys A, De Baere T, Boulens N, Doelker E. Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan. J Vasc Interv Radiol. 2010;21(7):1084–90.

    Article  PubMed  Google Scholar 

  25. Raoul J-L, Forner A, Bolondi L, et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat Rev. 2019;72:28–36.

    Article  CAS  PubMed  Google Scholar 

  26. Kang YJ, Lee BC, Kim JK, Yim NY, Kim HO, Cho SB, Jeong YY. Conventional versus small doxorubicin-eluting bead transcatheter arterial chemoembolization for treating barcelona clinic liver cancer stage 0/A hepatocellular carcinoma. Cardiovasc Interv Radiol. 2020;43(1):55–64.

    Article  Google Scholar 

  27. Lewis AL, Gonzalez MV, Lloyd AW, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol. 2006;17(2 Pt 1):335–42.

    Article  PubMed  Google Scholar 

  28. Abdekhodaie MJ, Wu XY. Drug loading onto ion-exchange microspheres: modeling study and experimental verification. Biomaterials. 2006;27(19):3652–62.

    CAS  PubMed  Google Scholar 

  29. Gonzalez MV, Tang Y, Phillips GJ, et al. Doxorubicin eluting beads-2: methods for evaluating drug elution and in-vitro:in-vivo correlation. J Mater Sci Mater Med. 2008;19(2):767–75.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Abd AM, Aljehani ZK, Gazzaz RW, Fakhri SH, Jabbad AH, Alahdal AM, Torchilin VP. Pharmacokinetic strategies to improve drug penetration and entrapment within solid tumors. J Control Release. 2015;10(219):269–77.

    Article  Google Scholar 

  31. Forster RE, Tang Y, Bowyer C, et al. Development of a combination drug-eluting bead: towards enhanced efficacy for locoregional tumour therapies. Anticancer Drugs. 2012;23(4):355–69.

    Article  CAS  PubMed  Google Scholar 

  32. Ranieri G, Ammendola M, Marech I, et al. Vascular endothelial growth factor and tryptase changes after chemoembolization in hepatocarcinoma patients. World J Gastroenterol. 2015;21(19):6018–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang B, Zheng CS, Feng GS, et al. Correlation of hypoxia-inducible factor 1alpha with angiogenesis in liver tumors after transcatheter arterial embolization in an animal model. Cardiovasc Interv Radiol. 2010;33(4):806–12.

    Article  Google Scholar 

  34. Gupta S, Kobayashi S, Phongkitkarun S, Broemeling LD, Kan Z. Effect of transcatheter hepatic arterial embolization on angiogenesis in an animal model. Invest Radiol. 2006;41(6):516–21.

    Article  PubMed  Google Scholar 

  35. Rhee TK, Young JY, Larson AC, et al. Effect of transcatheter arterial embolization on levels of hypoxia-inducible factor-1alpha in rabbit VX2 liver tumors. J Vasc Interv Radiol. 2007;18(5):639–45.

    Article  PubMed  Google Scholar 

  36. Deudero JJ, Caramelo C, Castellanos MC, et al. Induction of hypoxia-inducible factor-1alpha gene expression by vascular endothelial growth factor. J Biol Chem. 2008;283(17):11435–44.

    Article  CAS  PubMed  Google Scholar 

  37. Chung YH, Han G, Yoon JH, et al. Interim analysis of START: study in Asia of the combination of TACE (transcatheter arterial chemoembolization) with sorafenib in patients with hepatocellular carcinoma trial. Int J Cancer. 2013;132(10):2448–58.

    Article  CAS  PubMed  Google Scholar 

  38. Fuchs K, Bize PE, Denys A, Borchard G, Jordan O. Sunitinib-eluting beads for chemoembolization: methods for in vitro evaluation of drug release. Int J Pharm. 2015;482(1–2):68–74.

    Article  CAS  PubMed  Google Scholar 

  39. Hagan A, Phillips GJ, Macfarlane WM, Lloyd AW, Czuczman P, Lewis AL. Preparation and characterisation of vandetanib-eluting radiopaque beads for locoregional treatment of hepatic malignancies. Eur J Pharm Sci. 2017;1(101):22–30.

    Article  Google Scholar 

  40. Lee KH, Liapi EA, Cornell C, et al. Doxorubicin-loaded QuadraSphere microspheres: plasma pharmacokinetics and intratumoral drug concentration in an animal model of liver cancer. Cardiovasc Interv Radiol. 2010;33(3):576–82.

    Article  Google Scholar 

  41. Benjamin RS, Riggs CE Jr, Bachur NR. Plasma pharmacokinetics of adriamycin and its metabolites in humans with normal hepatic and renal function. Cancer Res. 1977;37(5):1416–20.

    CAS  PubMed  Google Scholar 

  42. Laubrock N, Hempel G, Schulze-Westhoff P, et al. The stability of doxorubicin and ldarubicin in plasma and whole blood. Chromatographia. 2000;52:9–13.

    Article  CAS  Google Scholar 

  43. Riss TL, Moravec RA, Niles AL, et al. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.

  44. Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42(9):3858–63.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miltiadis Krokidis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Consent for Publication

Consent for publication was obtained for every individual person’s data included in the study.

Informed Consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krokidis, M., Fakitsa, D., Malagari, K. et al. Combination of Doxorubicin and Antiangiogenic Agents in Drug-Eluting Beads: In Vitro Loading and Release Dynamics in View of a Novel Therapeutic Approach for Hepatocellular Carcinoma. Cardiovasc Intervent Radiol (2024). https://doi.org/10.1007/s00270-024-03714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00270-024-03714-z

Keywords

Navigation