Skip to main content

Advertisement

Log in

Role of MRI at 1- and 3-Month Follow-up in Predicting the Likelihood of Tumor Recurrence Following Percutaneous Cryoablation of Renal Tumors

  • CLINICAL INVESTIGATION
  • Imaging
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate whether ablation volume difference relatively to tumoral volume, minimal distance between ablation area and necrotic tumor, or apparent diffusion coefficient (ADC) within the ablation area, measured on 1- and 3-month follow-up MRI following cryoablation of renal tumors, are associated with tumor recurrence.

Materials and Methods

136 renal tumors were retrospectively identified. Patients, tumor characteristics and follow-up MRI (1-, 3-, 6-month, and thereafter annually) were collected. Uni- and multivariate analyses were performed to assess the association between the investigated parameters and tumor recurrence.

Results

Over the follow-up period (27.7 ± 21.9 months), 13 recurrences were identified at 20.5 ± 19.4 months. At 1- and 3-month, the mean volume difference between the ablation zone and the tumor volume were + 577.5 ± 511.3% vs + 251.4 ± 209.8% (p = 0.003), and + 268.8 ± 291.1% vs + 103.8 ± 94.6% (p = 0.023) in patients without and with tumor recurrence, respectively. At 1- and 3-month, the minimum distance between the necrotic tumor and the edge of the ablation area was 3.4 ± 2.5 vs 1.8 ± 1.9 mm (p = 0.019), and 2.4 ± 2.3 vs 1.4 ± 1.8 mm (p = 0.13) in patients without and with tumor recurrence, respectively. Analysis of ADC values was not associated with tumor recurrence. After performing the multivariate analysis, only volume difference of the ablation area compared to tumor volume was associated with absence of tumor recurrence at 1- (OR = 14.1; p = 0.001) and 3-month (OR = 8.2; p = 0.01).

Conclusions

Evaluation of volume difference between the ablation area and tumor volume on early (≤ 3 months) MRI follow-up identifies patients at risk of tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Ljungberg B, Albiges L, Abu-Ghanem Y, Bensalah K, Dabestani S, Fernández-Pello S, et al. European association of urology guidelines on renal cell carcinoma: the 2019 update. Eur Urol. 2019;75:799–810.

    Article  PubMed  Google Scholar 

  3. Psutka SP, Feldman AS, McDougal WS, McGovern FJ, Mueller P, Gervais DA. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur Urol. 2013;63:486–92.

    Article  PubMed  Google Scholar 

  4. Lim E, Kumar S, Seager M, Modi S, Mandal I, Neves JB, et al. Outcomes of renal tumors treated by image-guided percutaneous cryoablation: immediate and 3- and 5-year outcomes at a regional center. AJR Am J Roentgenol. 2020;215:242–7.

    Article  PubMed  Google Scholar 

  5. Krokidis ME, Orsi F, Katsanos K, Helmberger T, Adam A. CIRSE guidelines on percutaneous ablation of small renal cell carcinoma. Cardiovasc Intervent Radiol. 2017;40:177–91.

    Article  PubMed  Google Scholar 

  6. Correas J-M, Delavaud C, Gregory J, Le Guilchet T, Lamhaut L, Timsit M-O, et al. Ablative therapies for renal tumors: patient selection, treatment planning, and follow-up. Semin Ultrasound CT MR. 2017;38:78–95.

    Article  PubMed  Google Scholar 

  7. Garnon J. The money time for decision-making. Cardiovasc Intervent Radiol. 2021;44:901–2.

    Article  PubMed  Google Scholar 

  8. Ljungberg B, Albiges L, Abu-Ghanem Y, Bedke J, Capitanio U, Dabestani S, et al. European association of urology guidelines on renal cell carcinoma: the 2022 update. Eur Urol [Internet]. 2022 [cited 2022 Aug 25]; https://www.sciencedirect.com/science/article/pii/S0302283822016761

  9. Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol Elsevier. 2019;30:706–20.

    Article  CAS  Google Scholar 

  10. Krokidis ME, Orsi F, Katsanos K, Helmberger T, Adam A. CIRSE guidelines on percutaneous ablation of small renal cell carcinoma. Cardiovasc Interv Radiol. 2017;40:177–91.

    Article  Google Scholar 

  11. Allen BC, Remer EM. Percutaneous cryoablation of renal tumors: patient selection, technique, and postprocedural imaging <sup/>. Radiographics. 2010;30:887–900.

    Article  PubMed  Google Scholar 

  12. De Marini P, Cazzato RL, Garnon J, Dalili D, Leonard-Lorant I, Leclerc L, et al. Safety and oncologic efficacy of percutaneous MRI-guided cryoablation of intraparenchymal renal cancers. Diagn Interv Imaging. 2021;102:531–8.

    Article  PubMed  Google Scholar 

  13. Koch G, Cazzato RL, Caudrelier J, Cathelineau X, Lang H, Gangi A. Techniques d’ablation tumorale. Prog En Urol. 2017;27:853–64.

    Article  CAS  Google Scholar 

  14. Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria—A 10-year update. Radiology. 2014;273:241–60.

    Article  PubMed  Google Scholar 

  15. Lee H-J, Chung H-J, Wang H-K, Shen S-H, Chang Y-H, Chen C-K, et al. Evolutionary magnetic resonance appearance of renal cell carcinoma after percutaneous cryoablation. Br J Radiol. 2016;89:20160151.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kawamoto S, Solomon SB, Bluemke DA, Fishman EK. Computed tomography and magnetic resonance imaging appearance of renal neoplasms after radiofrequency ablation and cryoablation. Semin Ultrasound CT MRI. 2009;30:67–77.

    Article  Google Scholar 

  17. Durack JC, Richioud B, Lyon J, Solomon SB. Late emergence of contrast-enhancing fat necrosis mimicking tumor seeding after renal cryoablation. J Vasc Interv Radiol JVIR. 2014;25:133–7.

    Article  PubMed  Google Scholar 

  18. Wile GE, Leyendecker JR, Krehbiel KA, Dyer RB, Zagoria RJ. CT and MR imaging after imaging-guided thermal ablation of renal neoplasms. Radiographics. 2007;27:325–39.

    Article  PubMed  Google Scholar 

  19. Garnon J, Tricard T, Cazzato RL, Cathelineau X, Gangi A, Lang H. Traitement ablatif pour cancer du rein: modalités d’évaluation pré-, per-, post-intervention et prise en charge adaptée. Prog En Urol. 2017;27:971–93.

    Article  CAS  Google Scholar 

  20. Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, et al. Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the american college of radiology and the national kidney foundation. Radiology. 2020;294:660–8.

    Article  PubMed  Google Scholar 

  21. Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:706–20.

    Article  CAS  PubMed  Google Scholar 

  22. Laimer G, Jaschke N, Schullian P, Putzer D, Eberle G, Solbiati M, et al. Volumetric assessment of the periablational safety margin after thermal ablation of colorectal liver metastases. Eur Radiol. 2021;31:6489–99.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. They Are Data Radiology. 2016;278:563–77.

    PubMed  Google Scholar 

  24. Tsili AC, Andriotis E, Gkeli MG, Krokidis M, Stasinopoulou M, Varkarakis IM, et al. The role of imaging in the management of renal masses. Eur J Radiol. 2021;141: 109777.

    Article  PubMed  Google Scholar 

  25. Li A, Xing W, Li H, Hu Y, Hu D, Li Z, et al. Subtype Differentiation of small (≤ 4 cm) solid renal mass using volumetric histogram analysis of DWI at 3-T MRI. AJR Am J Roentgenol. 2018;211:614–23.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Luigi Cazzato.

Ethics declarations

Conflict of interest

Authors have no conflicts of interest to disclose.

Ethical Approval

For this type of study, formal consent is not required

Informed Consent

For this type of study, informed consent is not required.

Consent for Publication

For this type of study, consent for publication is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obellianne, J., De Marini, P., Cazzato, R.L. et al. Role of MRI at 1- and 3-Month Follow-up in Predicting the Likelihood of Tumor Recurrence Following Percutaneous Cryoablation of Renal Tumors. Cardiovasc Intervent Radiol 46, 777–785 (2023). https://doi.org/10.1007/s00270-023-03452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-023-03452-8

Keywords

Navigation