Skip to main content
Log in

CIRSE Standards of Practice on Hepatic Transarterial Chemoembolisation

  • CIRSE Standards of Practice
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

This CIRSE Standards of Practice document is aimed at interventional radiologists and provides best practices for performing transarterial chemoembolisation. It has been developed by an expert writing group under the guidance of the CIRSE Standards of Practice Committee. It will encompass all technical details reflecting European practice of different TACE procedures (Lp-TACE, DEM-TACE, DSM-TACE, b-TACE) as well as revising the existing literature on the various clinical indications (HCC, mCRC, ICC, NET). Finally, new frontiers of development will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SOP:

Standards of practice

c-TACE:

Conventional transarterial chemoembolisation

DEM-TACE:

Drug-eluting microsphere transarterial chemoembolisation

DSM-TACE:

Degradable starch microsphere transarterial chemoembolisation

b-TACE:

Balloon-occluded transarterial chemoembolisation

HCC:

Hepatocellular carcinoma

ICC:

Intrahepatic cholangiocarcinoma

m-CRC:

Metastatic colorectal cancer

NET:

Neuroendocrine tumour

MDCT:

Multidetector computed tomography

MRI:

Magnetic resonance imaging

TIPS:

Transjugular portosystemic shunt

BCLC:

Barcelona Clinic Liver Cancer

ECOG:

Eastern Cooperative Oncology Group

AST:

Aspartate transaminase

ALT:

Alanina transaminase

γGT:

Gamma-glutamyltransferase

AFP:

Alfa-fetoprotein

CBCT:

Cone beam computed tomography

TARE:

Transarterial radioembolisation

Transarterial chemoembolisation :

Blockade of tumorous arterial flow through embolic material which carried chemotherapeutic drugs.

Conventional TACE :

Performed with an emulsion of lipiodol (oil) and chemotherapeutic drugs, then followed by the administration of an embolic agent.

Drug-eluting microsphere TACE :

Performed with permanent microspheres loaded with chemotherapeutic drugs.

Degradable starch microsphere TACE :

Performed with a resorbable carrier mixed with chemotherapeutic drugs.

Balloon-occluded microcatheter TACE :

Performed with a balloon microcatheter inflated prior embolisation in combination with either lipiodol or microspheres mixed with chemotherapeutic drugs.

References

  1. Basile A, Carrafiello G, Ierardi AM, Tsetis D. Brountzos E Quality-improvement guidelines for hepatic transarterial chemoembolization. Cardiovasc Intervent Radiol. 2012;35(4):765–74.

    Article  PubMed  Google Scholar 

  2. Yamada R, Nakatsuka H, Nakamura K, et al. [Super-selective arterial embolization in unresectable hepatomas (author’s transl)] Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica. 1979;39(5):540–3.

    CAS  Google Scholar 

  3. Guan Y-S, He Q, Wang M-Q. Transcatheter arterial chemoembolization: history for more than 30 years. ISRN Gastroenterol. 2012;2012:1–8.

    Article  Google Scholar 

  4. Yamada R, Sato M, Kawabata M, Nakatsuka H, Nakamura K, Takashima S. Hepatic artery embolization in 120 patients with unresectable hepatoma. Radiology. 1983;148(2):397–401.

    Article  CAS  PubMed  Google Scholar 

  5. Craig P, Young S, Golzarian J. Current Trends in the Treatment of Hepatocellular Carcinoma with Transarterial Embolization: Variability in Technical Aspects. Cardiovasc Intervent Radiol. 2019;2(9):1322–8.

    Article  Google Scholar 

  6. Young S, Craig P, Golzarian J. Current trends in the treatment of hepatocellular carcinoma with transarterial embolization: a cross-sectional survey of techniques. Eur Radiol. 2019;29(6):3287–95.

    Article  PubMed  Google Scholar 

  7. Sahara S, Kawai N, Sato M, et al. Prospective evaluation of transcatheter arterial chemoembolization (TACE) with multiple anti-cancer drugs (epirubicin, cisplatin, mitomycin c, 5-fluorouracil) compared with TACE with epirubicin for treatment of hepatocellular carcinoma. Cardiovasc Intervent Radiol. 2012;35(6):1363–71.

    Article  PubMed  Google Scholar 

  8. Hong K, Khwaja A, Liapi E, Torbenson MS, Georgiades CS, Geschwind JF. New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clini cancer res Official J Am Assoc Cancer Res. 2006;12(8):2563–7.

    Article  CAS  Google Scholar 

  9. Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33(1):41–52.

    Article  PubMed  Google Scholar 

  10. Iezzi R, Pompili M, Rinninella E, et al. TACE with degradable starch microspheres (DSM-TACE) as second-line treatment in HCC patients dismissing or ineligible for sorafenib. Eur Radiol. 2019;29(3):1285–92.

    Article  PubMed  Google Scholar 

  11. Gross A, Albrecht T. Transarterial Chemoembolisation (TACE) with Degradable Starch Microspheres (DSM) and Anthracycline in Patients with Locally Extensive Hepatocellular Carcinoma (HCC): Safety and Efficacy. Cardiovasc Intervent Radiol. 2020;43(3):402–10.

    Article  PubMed  Google Scholar 

  12. Schicho A, Pereira PL, Haimerl M, et al. Transarterial chemoembolization (TACE) with degradable starch microspheres (DSM) in hepatocellular carcinoma (HCC): multi-center results on safety and efficacy. Oncotarget. 2017;8(42):72613–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goerg F, Zimmermann M, Bruners P, Neumann U, Luedde T, Kuhl C. Chemoembolization with Degradable Starch Microspheres for Treatment of Patients with Primary or Recurrent Unresectable, Locally Advanced Intrahepatic Cholangiocarcinoma: A Pilot Study. Cardiovasc Intervent Radiol. 2019;42(12):1709–17.

    Article  PubMed  Google Scholar 

  14. Schicho A, Pereira PL, Michalik K, Beyer LP, Stroszczynski C, Wiggermann P. Safety and efficacy of transarterial chemoembolization with degradable starch microspheres (DSM-TACE) in the treatment of secondary liver malignancies. Onco Targets Ther. 2018;11:345–50.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Irie T, Kuramochi M, Takahashi N. Dense accumulation of lipiodol emulsion in hepatocellular carcinoma nodule during selective balloon-occluded transarterial chemoembolization: measurement of balloon-occluded arterial stump pressure. Cardiovasc Intervent Radiol. 2013;36(3):706–13.

    Article  PubMed  Google Scholar 

  16. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  17. Gaba RC, Lokken RP, Hickey RM, et al. Quality Improvement Guidelines for Transarterial Chemoembolization and Embolization of Hepatic Malignancy. J Vasc Interv Radiol. 2017;28(9):1210–23.

    Article  PubMed  Google Scholar 

  18. Riihimaki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K. The epidemiology of metastases in neuroendocrine tumors. Int J Cancer. 2016;139(12):2679–86.

    Article  PubMed  Google Scholar 

  19. Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (Liver Imaging Reporting and Data System): Summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology. 2015;61(3):1056–65.

    Article  PubMed  Google Scholar 

  20. Di Tommaso L, Spadaccini M, Donadon M, et al. Role of liver biopsy in hepatocellular carcinoma. World J Gastroenterol. 2019;25(40):6041–52.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lencioni R, Petruzzi P, Crocetti L. Chemoembolization of hepatocellular carcinoma. Semin Intervent Radiol. 2013;30(1):3–11.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shin SW. The current practice of transarterial chemoembolization for the treatment of hepatocellular carcinoma. Korean J Radiol. 2009;10(5):425–34.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schraml C, Kaufmann S, Rempp H, et al. Imaging of HCC-Current State of the Art. Diagnostics. 2015;5(4):513–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Golfieri R, Renzulli M, Mosconi C, et al. Hepatocellular carcinoma responding to superselective transarterial chemoembolization: an issue of nodule dimension? J Vasc Interv Radiol. 2013;24(4):509–17.

    Article  PubMed  Google Scholar 

  25. Miura JT, Rilling WS, White SB, et al. Safety and efficacy of transarterial chemoembolization in patients with transjugular intrahepatic portosystemic shunts. HPB. 2015;17(8):707–12.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vogel A, Cervantes A, Chau I, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:238–55.

    Article  Google Scholar 

  27. Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386–422.

    Article  PubMed  Google Scholar 

  28. de Baere T, Deschamps F, Tselikas L, et al. GEP-NETS update: Interventional radiology: role in the treatment of liver metastases from GEP-NETs. Eur J Endocrinol. 2015;172(4):R151-166.

    Article  PubMed  Google Scholar 

  29. Tangkijvanich P, Anukulkarnkusol N, Suwangool P, et al. Clinical characteristics and prognosis of hepatocellular carcinoma: analysis based on serum alpha-fetoprotein levels. J Clin Gastroenterol. 2000;31(4):302–8.

    Article  CAS  PubMed  Google Scholar 

  30. Arai T, Kobayashi A, Ohya A, et al. Assessment of treatment outcomes based on tumor marker trends in patients with recurrent hepatocellular carcinoma undergoing trans-catheter arterial chemo-embolization. Int J Clin Oncol. 2014;19(5):871–9.

    Article  CAS  PubMed  Google Scholar 

  31. Yu R, Tan Z, Xiang X, Dan Y, Deng G. Effectiveness of PIVKA-II in the detection of hepatocellular carcinoma based on real-world clinical data. BMC Cancer. 2017;17(1):608.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Michl M, Koch J, Laubender RP, et al. Tumor markers CEA and CA 19–9 correlate with radiological imaging in metastatic colorectal cancer patients receiving first-line chemotherapy. Tumour Biol. 2014;35(10):10121–7.

    Article  CAS  PubMed  Google Scholar 

  33. Pavel M, Öberg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(7):844–60.

    Article  CAS  PubMed  Google Scholar 

  34. EASL Clinical Practice Guidelines. Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.

    Article  Google Scholar 

  35. Johnson PJ, Berhane S, Kagebayashi C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33(6):550–8.

    Article  PubMed  Google Scholar 

  36. Abdel-Rahman O. Prognostic Value of Baseline ALBI Score Among Patients With Colorectal Liver Metastases: A Pooled Analysis of Two Randomized Trials. Clin Colorectal Cancer. 2019;18(1):e61–8.

    Article  PubMed  Google Scholar 

  37. Rebonato A, Graziosi L, Maiettini D, et al. Inflammatory Markers as Prognostic Factors of Survival in Patients Affected by Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Gastroenterol Res Pract. 2017;2017:4164130–4164130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee MJ, Fanelli F, Haage P, Hausegger K, Van Lienden KP. Patient safety in interventional radiology: a CIRSE IR checklist. Cardiovasc Intervent Radiol. 2012;35(2):244–6.

    Article  CAS  PubMed  Google Scholar 

  39. Ogasawara S, Chiba T, Ooka Y, et al. A randomized placebo-controlled trial of prophylactic dexamethasone for transcatheter arterial chemoembolization. Hepatology. 2018;67(2):575–85.

    Article  CAS  PubMed  Google Scholar 

  40. Iezzi R, Kovacs A, Prenen H, Chevallier P, Pereira PL. Transarterial chemoembolisation of colorectal liver metastases with irinotecan-loaded beads: What every interventional radiologist should know. Eur J Radiol Open. 2020;7:100236.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang TC, Zhang ZS, Xiao YD. Determination of Risk Factors for Pain After Transarterial Chemoembolization with Drug-Eluting Beads for Hepatocellular Carcinoma. J Pain Res. 2020;13:649–56.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Benzakoun J, Ronot M, Lagadec M, et al. Risks factors for severe pain after selective liver transarterial chemoembolization. Liver Int. 2017;37(4):583–91.

    Article  CAS  PubMed  Google Scholar 

  43. Romagnoli S, Fanelli F, et al. CIRSE Standards of Practice on Analgesia and Sedation for Interventional Radiology in Adults. Cardiovasc Intervent Radiol. 2020;43(9):1251–60.

    Article  PubMed  Google Scholar 

  44. Chehab MA, Thakor AS, Tulin-Silver S, et al. Adult and Pediatric Antibiotic Prophylaxis during Vascular and IR Procedures: A Society of Interventional Radiology Practice Parameter Update Endorsed by the Cardiovascular and Interventional Radiological Society of Europe and the Canadian Association for Interventional Radiology. J Vasc Interv Radiol. 2018;29(11):1483-1501.e1482.

    Article  PubMed  Google Scholar 

  45. Patel IJ, Davidson JC, Nikolic B, et al. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol. 2012;23(6):727–36.

    Article  PubMed  Google Scholar 

  46. Hadi M, Walker C, Desborough M, et al. CIRSE Standards of Practice on Peri-operative Anticoagulation Management During Interventional Radiology Procedures. Cardiovasc Intervent Radiol. 2021;44(4):523–36.

    Article  PubMed  Google Scholar 

  47. Lucatelli P, Corona M, Argiro R, et al. Impact of 3D Rotational Angiography on Liver Embolization Procedures: Review of Technique and Applications. Cardiovasc Intervent Radiol. 2015;38(3):523–35.

    Article  PubMed  Google Scholar 

  48. Pung L, Ahmad M, Mueller K, et al. The Role of Cone-Beam CT in Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. J Vasc Interv Radiol. 2017;28(3):334–41.

    Article  PubMed  Google Scholar 

  49. Lucatelli P, De Rubeis G, Ginnani Corradini L, et al. Intra-procedural dual phase cone beam computed tomography has a better diagnostic accuracy over pre-procedural MRI and MDCT in detection and characterization of HCC in cirrhotic patients undergoing TACE procedure. Eur J Radiol. 2020;124:108806.

    Article  PubMed  Google Scholar 

  50. Lucatelli P, Argiro R, Bascetta S, et al. Single injection dual phase CBCT technique ameliorates results of trans-arterial chemoembolization for hepatocellular cancer. Transl Gastroenterol Hepatol. 2017;2:83.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schernthaner RE, Haroun RR, Duran R, et al. Improved Visibility of Metastatic Disease in the Liver During Intra-Arterial Therapy Using Delayed Arterial Phase Cone-Beam CT. Cardiovasc Intervent Radiol. 2016;39(10):1429–37.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kan Z, Ivancev K, Hägerstrand I, Chuang VP, Lunderquist A. In vivo microscopy of the liver after injection of Lipiodol into the hepatic artery and portal vein in the rat. Acta Radiol. 1989;30(4):419–25.

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka T, Arai Y, Inaba Y, et al. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology. Br J Radiol. 2014;87(1041):20140126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toyoda H, Kumada T, Sone Y. Impact of a Unified CT Angiography System on Outcome of Patients with Hepatocellular Carcinoma. Am J Roentgenol. 2009;192(3):766–74.

    Article  Google Scholar 

  55. de Baere T, Dufaux J, Roche A, et al. Circulatory alterations induced by intra-arterial injection of iodized oil and emulsions of iodized oil and doxorubicin: experimental study. Radiology. 1995;194(1):165–70.

    Article  CAS  PubMed  Google Scholar 

  56. Takayasu K, Shima Y, Muramatsu Y, et al. Hepatocellular carcinoma: treatment with intraarterial iodized oil with and without chemotherapeutic agents. Radiology. 1987;163(2):345–51.

    Article  CAS  PubMed  Google Scholar 

  57. Idée JM, Guiu B. Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. Crit Rev Oncol Hematol. 2013;88(3):530–49.

    Article  PubMed  Google Scholar 

  58. Deschamps F, Farouil G, Gonzalez W, et al. Stabilization Improves Theranostic Properties of Lipiodol(®)-Based Emulsion During Liver Trans-arterial Chemo-embolization in a VX2 Rabbit Model. Cardiovasc Intervent Radiol. 2017;40(6):907–13.

    Article  CAS  PubMed  Google Scholar 

  59. de Baere T, Zhang X, Aubert B, et al. Quantification of tumor uptake of iodized oils and emulsions of iodized oils: experimental study. Radiology. 1996;201(3):731–5.

    Article  PubMed  Google Scholar 

  60. Kan Z, Wright K, Wallace S. Ethiodized oil emulsions in hepatic microcirculation: in vivo microscopy in animal models. Acad Radiol. 1997;4(4):275–82.

    Article  CAS  PubMed  Google Scholar 

  61. de Baere T, Arai Y, Lencioni R, et al. Treatment of Liver Tumors with Lipiodol TACE: Technical Recommendations from Experts Opinion. Cardiovasc Intervent Radiol. 2016;39(3):334–43.

    Article  PubMed  Google Scholar 

  62. Kudo T, Monzawa S, Sugimura K. Evaluation of durability of three-way stopcocks to Lipiodol in making an emulsion for transcatheter arterial chemo-embolization. Medical Journal of Kobe University. 2004;64:47–52.

    Google Scholar 

  63. Boulin M, Schmitt A, Delhom E, et al. Improved stability of lipiodol-drug emulsion for transarterial chemoembolisation of hepatocellular carcinoma results in improved pharmacokinetic profile: Proof of concept using idarubicin. Eur Radiol. 2016;26(2):601–9.

    Article  PubMed  Google Scholar 

  64. Deschamps F, Moine L, Isoardo T, et al. Parameters for Stable Water-in-Oil Lipiodol Emulsion for Liver Trans-Arterial Chemo-Embolization. Cardiovasc Intervent Radiol. 2017;40(12):1927–32.

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura H, Hashimoto T, Oi H, Sawada S. Transcatheter oily chemoembolization of hepatocellular carcinoma. Radiology. 1989;170(3 Pt 1):783–6.

    Article  CAS  PubMed  Google Scholar 

  66. Tzeng WS, Wu RH, Chang SC, et al. Ionic versus nonionic contrast media solvents used with an epirubicin-based agent for transarterial chemoembolization of hepatocellular carcinoma. J Vasc Interv Radiol. 2008;19(3):342–50.

    Article  PubMed  Google Scholar 

  67. Gaba RC, Baumgarten S, Omene BO, et al. Ethiodized oil uptake does not predict doxorubicin drug delivery after chemoembolization in VX2 liver tumors. J Vasc Interv Radiol. 2012;23(2):265–73.

    Article  PubMed  Google Scholar 

  68. Chung JW, Park JH, Im JG, Han JK, Han MC. Pulmonary oil embolism after transcatheter oily chemoembolization of hepatocellular carcinoma. Radiology. 1993;187(3):689–93.

    Article  CAS  PubMed  Google Scholar 

  69. Louail B, Sapoval M, Bonneau M, Wasseff M, Senechal Q, Gaux JC. A new porcine sponge material for temporary embolization: an experimental short-term pilot study in swine. Cardiovasc Intervent Radiol. 2006;29(5):826–31.

    Article  CAS  PubMed  Google Scholar 

  70. Katsumori T, Kasahara T. The size of gelatin sponge particles: differences with preparation method. Cardiovasc Intervent Radiol. 2006;29(6):1077–83.

    Article  PubMed  Google Scholar 

  71. Laurent A, Wassef M, Chapot R, et al. Partition of calibrated tris-acryl gelatin microspheres in the arterial vasculature of embolized nasopharyngeal angiofibromas and paragangliomas. J Vasc Interv Radiol. 2005;16(4):507–13.

    Article  PubMed  Google Scholar 

  72. Lee KH, Liapi E, Vossen JA, et al. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy. J Vasc Interv Radiol. 2008;19(10):1490–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bonomo G, Pedicini V, Monfardini L, et al. Bland embolization in patients with unresectable hepatocellular carcinoma using precise, tightly size-calibrated, anti-inflammatory microparticles: first clinical experience and one-year follow-up. Cardiovasc Intervent Radiol. 2010;33(3):552–9.

    Article  PubMed  Google Scholar 

  74. Miyayama S, Matsui O, Yamashiro M, et al. Ultraselective transcatheter arterial chemoembolization with a 2-f tip microcatheter for small hepatocellular carcinomas: relationship between local tumor recurrence and visualization of the portal vein with iodized oil. J Vasc Interv Radiol. 2007;18(3):365–76.

    Article  PubMed  Google Scholar 

  75. de Baere T, Plotkin S, Yu R, Sutter A, Wu Y, Cruise GM. An In Vitro Evaluation of Four Types of Drug-Eluting Microspheres Loaded with Doxorubicin. J Vasc Interv Radiol. 2016;27(9):1425–31.

    Article  PubMed  Google Scholar 

  76. Varela M, Real MI, Burrel M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46(3):474–81.

    Article  CAS  PubMed  Google Scholar 

  77. Volkova M, Russell R 3rd. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7(4):214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Veloso Gomes F, Oliveira JA, Correia MT, et al. Chemoembolization of Hepatocellular Carcinoma with Drug-Eluting Polyethylene Glycol Embolic Agents: Single-Center Retrospective Analysis in 302 Patients. J Vasc Interv Radiol. 2018;29(6):841–9.

    Article  PubMed  Google Scholar 

  80. Aliberti C, Carandina R, Lonardi S, et al. Transarterial Chemoembolization with Small Drug-Eluting Beads in Patients with Hepatocellular Carcinoma: Experience from a Cohort of 421 Patients at an Italian Center. J Vasc Interv Radiol. 2017;28(11):1495–502.

    Article  PubMed  Google Scholar 

  81. Aal AKA, Moawad S, Lune PV, et al. Survival Outcomes of Very Small Drug-Eluting Beads Used in Chemoembolization of Unresectable Hepatocellular Carcinoma. J Vasc Interv Radiol. 2019;30(9):1325-1334.e1322.

    Article  PubMed  Google Scholar 

  82. Richter G, Radeleff B, Stroszczynski C, et al. Safety and Feasibility of Chemoembolization with Doxorubicin-Loaded Small Calibrated Microspheres in Patients with Hepatocellular Carcinoma: Results of the MIRACLE I Prospective Multicenter Study. Cardiovasc Intervent Radiol. 2018;41(4):587–93.

    Article  PubMed  Google Scholar 

  83. Balli H, Aksungur E, Khalatai B, Aikimbaev K. Super-Selective Transarterial Chemoembolization with Doxorubicin-Loaded Drug-Eluting Beads Sized Below and Above 100 Microns in Hepatocellular Carcinoma: A Comparative Study. J Belg Soc Radiol. 2019;103(1):47.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Delicque J, Guiu B, Boulin M, Schwanz H, Piron L, Cassinotto C. Liver chemoembolization of hepatocellular carcinoma using TANDEM((R)) microspheres. Future Oncol. 2018;14(26):2761–72.

    Article  CAS  PubMed  Google Scholar 

  85. Greco G, Cascella T, Facciorusso A, et al. Transarterial chemoembolization using 40 µm drug eluting beads for hepatocellular carcinoma. World J Radiol. 2017;9(5):245–52.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Malagari K, Pomoni M, Moschouris H, et al. Chemoembolization of hepatocellular carcinoma with HepaSphere 30–60 μm Safety and efficacy study. Cardiovasc Intervent Radiol. 2014;37(1):165–75.

    Article  PubMed  Google Scholar 

  87. Deipolyi AR, Oklu R, Al-Ansari S, Zhu AX, Goyal L, Ganguli S. Safety and efficacy of 70–150 mum and 100–300 mum drug-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol. 2015;26(4):516–22.

    Article  PubMed  Google Scholar 

  88. Lucatelli P, Argirò R, De Rubeis G, et al. Polyethylene Glycol Epirubicin-Loaded Transcatheter Arterial Chemoembolization Procedures Utilizing a Combined Approach with 100 and 200 μm Microspheres: A Promising Alternative to Current Standards. J Vasc Interv Radiol. 2019;30(3):305–13.

    Article  PubMed  Google Scholar 

  89. Lencioni R, de Baere T, Burrel M, et al. Transcatheter treatment of hepatocellular carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): technical recommendations. Cardiovasc Intervent Radiol. 2012;35(5):980–5.

    Article  PubMed  Google Scholar 

  90. Schernthaner RE, Lin M, Duran R, Chapiro J, Wang Z, Geschwind JF. Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization. Cardiovasc Intervent Radiol. 2015;38(4):929–36.

    Article  PubMed  Google Scholar 

  91. Akinwande OK, Philips P, Duras P, Pluntke S, Scoggins C, Martin RC. Small versus large-sized drug-eluting beads (DEBIRI) for the treatment of hepatic colorectal metastases: a propensity score matching analysis. Cardiovasc Intervent Radiol. 2015;38(2):361–71.

    Article  PubMed  Google Scholar 

  92. Yamasaki T, Hamabe S, Saeki I, et al. A novel transcatheter arterial infusion chemotherapy using iodized oil and degradable starch microspheres for hepatocellular carcinoma: a prospective randomized trial. J Gastroenterol. 2011;46(3):359–66.

    Article  CAS  PubMed  Google Scholar 

  93. Lucatelli P, De Rubeis G, Basilico F, et al. Sequential dual-phase cone-beam CT is able to intra-procedurally predict the one-month treatment outcome of multi-focal HCC, in course of degradable starch microsphere TACE. Radiol Med (Torino). 2019;124(12):1212–9.

    Article  Google Scholar 

  94. Aramburu J, Anton R, Rivas A, et al. Numerical zero-dimensional hepatic artery hemodynamics model for balloon-occluded transarterial chemoembolization. Int J Numer Method Biomed Eng. 2018;34(7):e2983.

    Article  PubMed  Google Scholar 

  95. Lucatelli P, Corradini LG, De Rubeis G, et al. Balloon-Occluded Transcatheter Arterial Chemoembolization (b-TACE) for Hepatocellular Carcinoma Performed with Polyethylene-Glycol Epirubicin-Loaded Drug-Eluting Embolics: Safety and Preliminary Results. Cardiovasc Intervent Radiol. 2019;42(6):853–62.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Matsumoto T, Endo J, Hashida K, et al. Balloon-occluded transarterial chemoembolization using a 1.8-French tip coaxial microballoon catheter for hepatocellular carcinoma: technical and safety considerations. Minim Invasive Ther Allied Technol. 2015;24(2):94–100.

    Article  PubMed  Google Scholar 

  97. Reicher J, Mafeld S, Priona G, et al. Early Experience of Trans-arterial Chemo-Embolisation for Hepatocellular Carcinoma with a Novel Radiopaque Bead. Cardiovasc Intervent Radiol. 2019;42(11):1563–70.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Aliberti C, Carandina R, Sarti D, et al. Transarterial chemoembolization with DC Bead LUMITM radiopaque beads for primary liver cancer treatment: preliminary experience. Future Oncol. 2017;13(25):2243–52.

    Article  CAS  PubMed  Google Scholar 

  99. Moschouris H, Malagari K, Dimakis A, Kiakidis T, Anagnostopoulou A. Transarterial Chemoembolization of HCC with Radiopaque Microspheres: Evaluation with Computed Tomography and the Complementary Role of Contrast-Enhanced Ultrasonography. Cardiovasc Intervent Radiol. 2020;43(7):1075–83.

    Article  PubMed  Google Scholar 

  100. Hagan A, Caine M, Press C, et al. Predicting pharmacokinetic behaviour of drug release from drug-eluting embolization beads using in vitro elution methods. Eur J Pharm Sci. 2019;136:104943.

    Article  CAS  PubMed  Google Scholar 

  101. Tacher V, Radaelli A, Lin M, Geschwind J-F. How I Do It: Cone-Beam CT during Transarterial Chemoembolization for Liver Cancer. Radiology. 2015;274(2):320–34.

    Article  PubMed  Google Scholar 

  102. Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19(3):329–38.

    Article  CAS  PubMed  Google Scholar 

  103. Forner A, Reig ME, Rodriguez de Lope C, Bruix J. Current Strategy for Staging and Treatment The BCLC Update and Future Prospects. Seminars in liver disease. 2010;30(1):061–074.

  104. Lo CM, Ngan H, Tso WK, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35(5):1164–71.

    Article  CAS  PubMed  Google Scholar 

  105. Llovet JM, Real MI, Montaña X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–9.

    Article  PubMed  Google Scholar 

  106. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology. 2003;37(2):429–42.

    Article  CAS  PubMed  Google Scholar 

  107. Cammà C, Schepis F, Orlando A, et al. Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. Radiology. 2002;224(1):47–54.

    Article  PubMed  Google Scholar 

  108. Golfieri R, Giampalma E, Renzulli M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer. 2014;111(2):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Facciorusso A, Di Maso M, Muscatiello N. Drug-eluting beads versus conventional chemoembolization for the treatment of unresectable hepatocellular carcinoma: A meta-analysis. Digestive Liver Dis. 2016;48(6):571–7.

    Article  CAS  Google Scholar 

  110. Yang B, Liang J, Qu Z, Yang F, Liao Z, Gou H. Transarterial strategies for the treatment of unresectable hepatocellular carcinoma: A systematic review. PLoS ONE. 2020;15(2):e0227475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Auer TA, Jonczyk M, Collettini F, et al. Trans-arterial chemoembolization with degradable starch microspheres (DSM-TACE) versus selective internal radiation therapy (SIRT) in multifocal hepatocellular carcinoma. Acta Radiol. 2020;62(3):313–21.

    Article  PubMed  Google Scholar 

  112. Ogawa M, Takayasu K, Hirayama M, et al. Efficacy of a microballoon catheter in transarterial chemoembolization of hepatocellular carcinoma using miriplatin, a lipophilic anticancer drug: Short-term results. Hepatol Res official J Japan Soc Hepatol. 2016;46(3):E60-69.

    Article  CAS  Google Scholar 

  113. Irie T, Kuramochi M, Kamoshida T, Takahashi N. Selective balloon-occluded transarterial chemoembolization for patients with one or two hepatocellular carcinoma nodules: Retrospective comparison with conventional super-selective TACE. Hepatol Res official J Japan Soc Hepatol. 2016;46(2):209–14.

    Article  Google Scholar 

  114. Maruyama M, Yoshizako T, Nakamura T, Nakamura M, Yoshida R, Kitagaki H. Initial Experience with Balloon-Occluded Trans-catheter Arterial Chemoembolization (B-TACE) for Hepatocellular Carcinoma. Cardiovasc Intervent Radiol. 2016;39(3):359–66.

    Article  PubMed  Google Scholar 

  115. Goldman DT, Singh M, Patel RS, et al. Balloon-Occluded Transarterial Chemoembolization for the Treatment of Hepatocellular Carcinoma: A Single-Center US Preliminary Experience. J Vasc Interv Radiol. 2019;30(3):342–6.

    Article  PubMed  Google Scholar 

  116. Golfieri R, Bezzi M, Verset G, et al. Retrospective European Multicentric Evaluation of Selective Transarterial Chemoembolisation with and without Balloon-Occlusion in Patients with Hepatocellular Carcinoma: A Propensity Score Matched Analysis. Cardiovasc Intervent Radiol. 2021;44(7):1048–59.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Vogl TJ, Wissniowski TT, Naguib NN, et al. Activation of tumor-specific T lymphocytes after laser-induced thermotherapy in patients with colorectal liver metastases. Cancer Immunol Immunother. 2009;58(10):1557–63.

    Article  PubMed  Google Scholar 

  118. Albert M, Kiefer MV, Sun W, et al. Chemoembolization of colorectal liver metastases with cisplatin, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol. Cancer. 2011;117(2):343–52.

    Article  CAS  PubMed  Google Scholar 

  119. Martin RC, Joshi J, Robbins K, et al. Hepatic intra-arterial injection of drug-eluting bead, irinotecan (DEBIRI) in unresectable colorectal liver metastases refractory to systemic chemotherapy: results of multi-institutional study. Ann Surg Oncol. 2011;18(1):192–8.

    Article  PubMed  Google Scholar 

  120. Fiorentini G, Aliberti C, Tilli M, et al. Intra-arterial infusion of irinotecan-loaded drug-eluting beads (DEBIRI) versus intravenous therapy (FOLFIRI) for hepatic metastases from colorectal cancer: final results of a phase III study. Anticancer Res. 2012;32(4):1387–95.

    CAS  PubMed  Google Scholar 

  121. Iezzi R, Marsico VA, Guerra A, et al. Trans-Arterial Chemoembolization with Irinotecan-Loaded Drug-Eluting Beads (DEBIRI) and Capecitabine in Refractory Liver Prevalent Colorectal Metastases: A Phase II Single-Center Study. Cardiovasc Intervent Radiol. 2015;38(6):1523–31.

    Article  PubMed  Google Scholar 

  122. Levy J, Zuckerman J, Garfinkle R, et al. Intra-arterial therapies for unresectable and chemorefractory colorectal cancer liver metastases: a systematic review and meta-analysis. HPB. 2018;20(10):905–15.

    Article  PubMed  Google Scholar 

  123. Pereira PL, et al. The CIREL Cohort: A Prospective Controlled Registry Studying the Real-Life Use of Irinotecan-Loaded Chemoembolisation in Colorectal Cancer Liver Metastases: Interim Analysis. CardioVasc Interv Radiol. 2020;44:50–62.

    Article  Google Scholar 

  124. Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, Pawlik TM, Gores GJ. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60(6):1268–89.

    Article  PubMed  Google Scholar 

  125. Hyder O, Marsh JW, Salem R, et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol. 2013;20(12):3779–86.

    Article  PubMed  Google Scholar 

  126. Filippi L, Schillaci O, Cianni R, Bagni O. Yttrium-90 resin microspheres and their use in the treatment of intrahepatic cholangiocarcinoma. Future Oncol. 2018;14(9):809–18.

    Article  CAS  PubMed  Google Scholar 

  127. Labib PL, Davidson BR, Sharma RA, Pereira SP. Locoregional therapies in cholangiocarcinoma. Hepat Oncol. 2017;4(4):99–109.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Schicho A, Pereira PL, Pützler M, et al. Degradable Starch Microspheres Transcatheter Arterial Chemoembolization (DSM-TACE) in Intrahepatic Cholangiocellular Carcinoma (ICC): Results from a National Multi-Center Study on Safety and Efficacy. Med Sci Monit. 2017;23:796–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Do Minh D, Chapiro J, Gorodetski B, et al. Intra-arterial therapy of neuroendocrine tumour liver metastases: comparing conventional TACE, drug-eluting beads TACE and yttrium-90 radioembolisation as treatment options using a propensity score analysis model. Eur Radiol. 2017;27(12):4995–5005.

    Article  PubMed  Google Scholar 

  130. Da Dong X, Carr BI. Hepatic artery chemoembolization for the treatment of liver metastases from neuroendocrine tumors: a long-term follow-up in 123 patients. Med Oncol. 2011;28(1):286–90.

    Article  Google Scholar 

  131. Gaba RC, Lewandowski RJ, Hickey R, et al. Transcatheter Therapy for Hepatic Malignancy: Standardization of Terminology and Reporting Criteria. J Vasc Interv Radiol. 2016;27(4):457–73.

    Article  PubMed  Google Scholar 

  132. Filippiadis DK, Binkert C, Pellerin O, Hoffmann RT, Krajina A, Pereira PL. Cirse Quality Assurance Document and Standards for Classification of Complications: The Cirse Classification System. Cardiovasc Intervent Radiol. 2017;40(8):1141–6.

    Article  CAS  PubMed  Google Scholar 

  133. Vera R, Aparicio J, Carballo F, et al. Recommendations for follow-up of colorectal cancer survivors. Clin Transl Oncol. 2019;21(10):1302–11.

    Article  CAS  PubMed  Google Scholar 

  134. Singh S, Moody L, Chan DL, et al. Follow-up Recommendations for Completely Resected Gastroenteropancreatic Neuroendocrine Tumors. JAMA Oncol. 2018;4(11):1597–604.

    Article  PubMed  Google Scholar 

  135. Rahnemai-Azar AA, Pandey P, Kamel I, Pawlik TM. Monitoring outcomes in intrahepatic cholangiocarcinoma patients following hepatic resection. Hepat Oncol. 2016;3(4):223–39.

    Article  PubMed  Google Scholar 

  136. Takayasu K, Arii S, Ikai I, et al. Overall survival after transarterial lipiodol infusion chemotherapy with or without embolization for unresectable hepatocellular carcinoma: propensity score analysis. AJR Am J Roentgenol. 2010;194(3):830–7.

    Article  PubMed  Google Scholar 

  137. Kim DY, Ryu HJ, Choi JY, et al. Radiological response predicts survival following transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma. Aliment Pharmacol Ther. 2012;35(11):1343–50.

    Article  CAS  PubMed  Google Scholar 

  138. Arora A, Kumar A. Treatment Response Evaluation and Follow-up in Hepatocellular Carcinoma. J Clin Exp Hepatol. 2014;4(Suppl 3):S126-129.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Liu W, Zheng Y, Zou R, et al. Impact of follow-up interval on patients with hepatocellular carcinoma after curative ablation. BMC Cancer. 2018;18(1):1186.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  141. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 11). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  142. Lucidarme O, Wagner M, Gillard P, et al. RECIST and CHOI criteria in the evaluation of tumor response in patients with metastatic colorectal cancer treated with regorafenib, a prospective multicenter study. Cancer Imaging. 2019;19(1):85.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kadalayil L, Benini R, Pallan L, et al. A simple prognostic scoring system for patients receiving transarterial embolisation for hepatocellular cancer. Ann Oncol. 2013;24(10):2565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hucke F, Pinter M, Graziadei I, et al. How to STATE suitability and START transarterial chemoembolization in patients with intermediate stage hepatocellular carcinoma. J Hepatol. 2014;61(6):1287–96.

    Article  PubMed  Google Scholar 

  145. Wang Q, Xia D, Bai W, et al. Development of a prognostic score for recommended TACE candidates with hepatocellular carcinoma: A multicentre observational study. J Hepatol. 2019;70(5):893–903.

    Article  PubMed  Google Scholar 

  146. Terzi E, Terenzi L, Venerandi L, et al. The ART score is not effective to select patients for transarterial chemoembolization retreatment in an Italian series. Dig Dis. 2014;32(6):711–6.

    Article  PubMed  Google Scholar 

  147. Kudo M, Arizumi T, Ueshima K. Assessment for retreatment (ART) score for repeated transarterial chemoembolization in patients with hepatocellular carcinoma. Hepatology. 2014;59(6):2424–5.

    Article  PubMed  Google Scholar 

  148. Forner A, Gilabert M, Bruix J, Raoul JL. Treatment of intermediate-stage hepatocellular carcinoma. Nature reviews Clin Oncol. 2014;11(9):525–35.

    Article  CAS  Google Scholar 

  149. Olweny CL, Toya T, Katongole-Mbidde E, Mugerwa J, Kyalwazi SK, Cohen H. Treatment of hepatocellular carcinoma with adriamycin. Preliminary commun Cancer. 1975;36(4):1250–7.

    CAS  Google Scholar 

  150. Kawai S, Tani M, Okamura J, et al. Prospective and randomized trial of lipiodol-transcatheter arterial chemoembolization for treatment of hepatocellular carcinoma: a comparison of epirubicin and doxorubicin (second cooperative study). The Cooperative Study Group for Liver Cancer Treatment of Japan. Semin Oncol. 1997;24:S6-38-s36-45.

    Google Scholar 

  151. Watanabe S, Nishioka M, Ohta Y, Ogawa N, Ito S, Yamamoto Y. Prospective and randomized controlled study of chemoembolization therapy in patients with advanced hepatocellular carcinoma Cooperative Study Group for Liver Cancer Treatment in Shikoku area. Cancer Chemother Pharmacol. 1994;33:S93-96.

    Article  PubMed  Google Scholar 

  152. Shi M, Lu LG, Fang WQ, et al. Roles played by chemolipiodolization and embolization in chemoembolization for hepatocellular carcinoma: single-blind, randomized trial. J Natl Cancer Inst. 2013;105(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  153. Boulin M, Hillon P, Cercueil JP, et al. Idarubicin-loaded beads for chemoembolisation of hepatocellular carcinoma: results of the IDASPHERE phase I trial. Aliment Pharmacol Ther. 2014;39(11):1301–13.

    Article  CAS  PubMed  Google Scholar 

  154. Favelier S, Boulin M, Hamza S, et al. Lipiodol trans-arterial chemoembolization of hepatocellular carcinoma with idarubicin: first experience. Cardiovasc Intervent Radiol. 2013;36(4):1039–46.

    Article  PubMed  Google Scholar 

  155. Guiu B, Chevallier P, Assenat E, et al. Idarubicin-loaded Beads for Chemoembolization of Hepatocellular Carcinoma: The IDASPHERE II Single-Arm Phase II Trial. Radiology. 2019;291(3):801–8.

    Article  PubMed  Google Scholar 

  156. Guiu B, Jouve JL, Schmitt A, et al. Intra-arterial idarubicin_lipiodol without embolisation in hepatocellular carcinoma: The LIDA-B phase I trial. J Hepatol. 2018;68(6):1163–71.

    Article  CAS  PubMed  Google Scholar 

  157. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma Nat Rev Dis Primers. 2021;7(1):6.

    Article  PubMed  Google Scholar 

  158. Sergio A, Cristofori C, Cardin R, et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the role of angiogenesis and invasiveness. Am J Gastroenterol. 2008;103(4):914–21.

    Article  PubMed  Google Scholar 

  159. Kudo M, Ueshima K, Ikeda M, et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut. 2020;69(8):1492.

    Article  PubMed  Google Scholar 

  160. Sakamoto I, Aso N, Nagaoki K, et al. Complications associated with transcatheter arterial embolization for hepatic tumors. Radiographics. 1998;18(3):605–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierleone Lucatelli.

Ethics declarations

Conflict of interest

Marta Burrel has been a paid speaker for BTG, Guerbet and Terumo. Boris Guiu has recieved study funding from Guerbet, Boston Scientific and Terumo. He has also acted as a consultant for Boston Scientific and Terumo. All other authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucatelli, P., Burrel, M., Guiu, B. et al. CIRSE Standards of Practice on Hepatic Transarterial Chemoembolisation. Cardiovasc Intervent Radiol 44, 1851–1867 (2021). https://doi.org/10.1007/s00270-021-02968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-021-02968-1

Keywords

Navigation