Skip to main content

Intra-Arterial Therapies for Liver Metastatic Breast Cancer: A Systematic Review and Meta-Analysis

Abstract

Purpose

Performing a systematic review and meta-analysis to assess the evidence of intra-arterial therapies in liver metastatic breast cancer (LMBC) patients.

Methods

A systemic literature search was performed in PubMed, EMBASE, SCOPUS for studies regarding intra-arterial therapies in LMBC patients. Full text studies of LMBC patients (n ≥ 10) published between January 2010 and December 2020 were included when at least one outcome among response rate, adverse events or survival was available. Response rates were pooled using generalized linear mixed models. A weighted estimate of the population median overall survival (OS) was obtained under the assumption of exponentially distributed survival times.

Results

A total of 26 studies (1266 patients) were included. Eleven articles reported on transarterial radioembolization (TARE), ten on transarterial chemoembolization (TACE) and four on chemo-infusion. One retrospective study compared TARE and TACE. Pooled response rates were 49% for TARE (95%CI 32–67%), 34% for TACE (95%CI 22–50%) and 19% for chemo-infusion (95%CI 14–25%). Pooled median survival was 9.2 months (range 6.1–35.4 months) for TARE, 17.8 months (range 4.6–47.0) for TACE and 7.9 months (range 7.0–14.2) for chemo-infusion. No comparison for OS was possible due to missing survival rates at specific time points (1 and 2 year OS) and the large heterogeneity.

Conclusion

Although results have to be interpreted with caution due to the large heterogeneity, the superior response rate of TARE and TACE compared to chemo-infusion suggests first choice of TARE or TACE in chemorefractory LMBC patients. Chemo-infusion could be considered in LMBC patients not suitable for TARE or TACE.

Level of Evidence

3a-

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

MBC:

Metastatic breast cancer

OS:

Overall survival

LMBC:

Liver metastatic breast cancer

PFS:

Progression-free survival

TARE:

Transarterial radioembolization

TAE:

Transarterial embolization

TACE:

Transarterial chemoembolization

DEBDOX:

Drug-eluting beads loaded with doxorubicin

18F-FDG PET:

18F-FDG positron emission tomography

CI:

Confidence interval

RECIST:

Response evaluation criteria in solid tumors

References

  1. 1.

    Wu S-G, Li H, Tang L-Y, et al. The effect of distant metastases sites on survival in de novo stage-IV breast cancer: A SEER database analysis. Tumor Biology. 2017;39(6):1010428317705082.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Eng LG, Dawood S, Sopik V, et al. Ten-year survival in women with primary stage IV breast cancer. Breast Cancer Res Treat. 2016;160(1):145–52.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Kwapisz D. Oligometastatic breast cancer. Breast Cancer. 2019;26(2):138–46.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Lim B, Hortobagyi GN. Current challenges of metastatic breast cancer. Cancer Metastasis Rev. 2016;35(4):495–514.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954;30(5):969–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Levy J, Zuckerman J, Garfinkle R, et al. Intra-arterial therapies for unresectable and chemorefractory colorectal cancer liver metastases: A systematic review and meta-analysis. HPB (Oxford). 2018;20(10):905–15.

    Article  Google Scholar 

  7. 7.

    Duran R, Chapiro J, Schernthaner RE, Geschwind JF. Systematic review of catheter-based intra-arterial therapies in hepatocellular carcinoma: state of the art and future directions. Br J Radiol. 2015;88(1052):20140564.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Gordon AC, Uddin OM, Riaz A, Salem R, Lewandowski RJ. Making the case: Intra-arterial therapy for less common metastases. Semin Intervent Radiol. 2017;34(2):132–9.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ. 2015;349(jan02 1):g7647–g7647.

    Article  Google Scholar 

  10. 10.

    Munn Z PK, Aromataris E, Lockwood C, Peters M et al. Supporting Document for the Joanna Briggs Institute Levels of Evidence and Grades of Recommendation. The Joanna Briggs Institute Levels of Evidence and Grades of Recommendation Working Party. 2014 The Joanna Briggs Institute

  11. 11.

    Warton DI, Hui FK. The arcsine is asinine: The analysis of proportions in ecology. Ecology. 2011;92(1):3–10.

    PubMed  Article  Google Scholar 

  12. 12.

    Schwarzer G, Chemaitelly H, Abu-Raddad LJ, Rücker G. Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions. Res Synth Methods. 2019;10(3):476–83.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Gillen S, Schuster T, Meyer Zum Büschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7(4):1000267.

    Article  CAS  Google Scholar 

  14. 14.

    Cianni R, Pelle G, Notarianni E, et al. Radioembolisation with (90)Y-labelled resin microspheres in the treatment of liver metastasis from breast cancer. Eur Radiol. 2013;23(1):182–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Helmberger T, Golfieri R, Pech M, et al. Clinical application of trans-arterial radioembolization in Hepatic malignancies in Europe: First results from the prospective multicentre observational study CIRSE registry for SIR-Spheres Therapy (CIRT). Cardiovasc Intervent Radiol. 2020;44:21–35.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Aarts BM, Klompenhouwer EG, Dresen RC, et al. Sequential intra-arterial infusion of 90Y-resin microspheres and mitomycin C in chemo refractory liver metastatic breast cancer patients: A single centre pilot study. Radiol Oncol. 2020;54(1):33–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Bagni O, Filippi L, Pelle G, Cianni R, Schillaci O. Total lesion glycolysis and sequential (90)Y-selective internal radiation therapy in breast cancer liver metastases: Preliminary results. Cancer Biother Radiopharm. 2015;30(10):421–6.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Davisson NA, Bercu ZL, Friend SC, et al. Predictors of survival after yttrium-90 radioembolization of chemotherapy-refractory hepatic metastases from breast cancer. J Vasc Interv Radiol. 2020;31(6):925–33.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Gordon AC, Gradishar WJ, Kaklamani VG, et al. Yttrium-90 radioembolization stops progression of targeted breast cancer liver metastases after failed chemotherapy. J Vasc Interv Radiol. 2014;25(10):1523–1532

  20. 20.

    Saxena A, Kapoor J, Meteling B, Morris DL, Bester L. Yttrium-90 radioembolization for unresectable, chemoresistant breast cancer liver metastases: A large single-center experience of 40 patients. Ann Surg Oncol. 2014;21(4):1296–303.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Fendler WP, Lechner H, Todica A, et al. Safety, efficacy, and prognostic factors after radioembolization of hepatic metastases from breast cancer: a large single-center experience in 81 patients. J Nucl Med. 2016;57(4):517–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Pieper CC, Meyer C, Wilhelm KE, et al. Yttrium-90 radioembolization of advanced, unresectable breast cancer liver metastases-a single-center experience. J Vasc Interv Radiol. 2016;27(9):1305–15.

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Deipolyi AR, Riedl CC, Bromberg J, et al. Association of PI3K pathway mutations with early positron-emission tomography/CT imaging response after radioembolization for breast cancer liver metastases: Results of a single-center retrospective pilot study. J Vasc Interv Radiol. 2018;29(9):1226–35.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Sabet A, Ries M, Al-Khalaf Y, et al. Early metabolic response assessment of breast cancer liver metastases: 4-week posttreatment FDG PET predicts survival after 90Y microsphere radioembolization. Nuklearmedizin. 2019;58(3):242–8.

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Martin RC, Robbins K, Fages JF, et al. Optimal outcomes for liver-dominant metastatic breast cancer with transarterial chemoembolization with drug-eluting beads loaded with doxorubicin. Breast Cancer Res Treat. 2012;132(2):753–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Joshi J, Robbins K, Valek V, et al. Transarterial chemoembolization with drug-eluting beads loaded with doxorubicin for the treatment of metastatic breast cancer to the liver: Results from a multiinstitutional registry. J Interventional Oncol. 2010;3(2):39–47.

    Google Scholar 

  27. 27.

    Eichler K, Jakobi S, Gruber-Rouh T, Hammerstingl R, Vogl TJ, Zangos S. Transarterial chemoembolisation (TACE) with gemcitabine: phase II study in patients with liver metastases of breast cancer. Eur J Radiol. 2013;82(12):e816-822.

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Lindgaard SC, Brinch CM, Jensen BK, et al. Hepatic arterial therapy with oxaliplatin and systemic capecitabine for patients with liver metastases from breast cancer. Breast. 2019;43:113–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Vogl TJ, Naguib NN, Nour-Eldin NE, Eichler K, Zangos S, Gruber-Rouh T. Transarterial chemoembolization (TACE) with mitomycin C and gemcitabine for liver metastases in breast cancer. Eur Radiol. 2010;20(1):173–80.

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Lin YT, Medioni J, Amouyal G, Dean C, Sapoval M, Pellerin O. Doxorubicin-loaded 70–150 mum microspheres for liver-dominant metastatic breast cancer: Results and outcomes of a pilot study. Cardiovasc Intervent Radiol. 2017;40(1):81–9.

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Cho SW, Kitisin K, Buck D, et al. Transcatheter arterial chemoembolization is a feasible palliative locoregional therapy for breast cancer liver metastases. Int J Surg Oncol. 2010;2010:251621.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Duan XF, Dong NN, Zhang T, Li Q. Treatment outcome of patients with liver-only metastases from breast cancer after mastectomy: A retrospective analysis. J Cancer Res Clin Oncol. 2011;137(9):1363–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Farshid P, Darvishi A, Naguib N, et al. Repetitive chemoembolization of hypovascular liver metastases from the most common primary sites. J Future Oncology. 2013;9(3):419–26.

    CAS  Article  Google Scholar 

  34. 34.

    Nielsen DL, Norgaard H, Vestermark LW, et al. Intrahepatic and systemic therapy with oxaliplatin combined with capecitabine in patients with hepatic metastases from breast cancer. Breast. 2012;21(4):556–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Tewes M, Peis MW, Bogner S, et al. Hepatic arterial infusion chemotherapy for extensive liver metastases of breast cancer: efficacy, safety and prognostic parameters. J Cancer Res Clin Oncol. 2017;143(10):2131–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Fu S, Naing A, Moulder SL, et al. Phase I trial of hepatic arterial infusion of nanoparticle albumin-bound paclitaxel: Toxicity, pharmacokinetics, and activity. Mol Cancer Ther. 2011;10(7):1300–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Tsimberidou AM, Vaklavas C, Fu S, et al. Hepatic arterial infusion therapy in advanced cancer and liver-predominant disease: the MD anderson experience. Hepatogastroenterology. 2013;60(127):1611–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Aarts BM, Klompenhouwer EG, Dresen RC, et al. Intra-arterial Mitomycin C infusion in a large cohort of advanced liver metastatic breast cancer patients: Safety, efficacy and factors influencing survival. Breast Cancer Res Treat. 2019;176(3):597–605.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Chang J, Charalel R, Noda C, et al. Liver-dominant Breast cancer metastasis: A comparative outcomes study of chemoembolization versus radioembolization. Anticancer Res. 2018;38(5):3063–8.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Haug AR, Tiega Donfack BP, Trumm C, et al. 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med. 2012;53(3):371–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Barabasch A, Heinzel A, Bruners P, Kraemer NA, Kuhl CK. Diffusion-weighted MRI Is superior to PET/CT in predicting survival of patients undergoing (90)Y radioembolization of hepatic metastases. Radiology. 2018;288(3):764–73.

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Li XP, Meng ZQ, Guo WJ, Li J. Treatment for liver metastases from breast cancer: Results and prognostic factors. World J Gastroenterol. 2005;11(24):3782–7.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Claessens AKM, Ramaekers BLT, Lobbezoo DJA, et al. Quality of life in a real-world cohort of advanced breast cancer patients: A study of the SONABRE Registry. Qual Life Res. 2020;29(12):3363–74.

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Schrijver W, Suijkerbuijk KPM, van Gils CH, van der Wall E, Moelans CB, van Diest PJ. Receptor conversion in distant breast cancer metastases: A systematic review and meta-analysis. J Natl Cancer Inst. 2018;110(6):568–80.

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Angus L, Smid M, Wilting SM, et al. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet. 2019;51(10):1450–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. M. Aarts.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Consent for Publication

For this type of study, consent for publication is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Full Search Pubmed

Appendix 1: Full Search Pubmed

((“Breast Neoplasms”[Mesh] OR ((breast*[tiab] OR mammary[tiab] OR mamma[tiab]) AND (neoplasm*[tiab] OR tumor[tiab] OR tumors[tiab] OR tumour*[tiab] OR cancer*[tiab] OR malign*[tiab] OR oncolog*[tiab] OR carcinom*[tiab])) OR (mammacarcinom*[tiab] OR mamma-carcinom*[tiab])) AND (“Liver Neoplasms”[Mesh] OR liver[tiab] OR hepatic[tiab] OR hepatocellular[tiab]) AND (“Neoplasm Metastasis”[MeSH] OR metasta*[tiab] OR metasti*[tiab]) OR LMBC[tiab]) AND (“Infusions, Intra-Arterial”[MeSH] OR intra arterial infusion*[tiab] OR intraarterial infusion*[tiab] OR intraarterial therap*[tiab] OR regional arterial infusion*[tiab] OR intra arterial therap*[tiab] OR hepatic arterial infusion*[tiab] OR hepatic arterial catheter*[tiab] OR (intra-hepatic[tiab] AND infusion*[tiab]) OR HAI[tiab] OR HAIC[tiab] OR chemo emboliz*[tiab] OR chemoemboliz*[tiab] OR chemoembolis*[tiab] OR chemo-embolis*[tiab] OR TACE[tiab] OR TAE[tiab] OR radioemboliz*[tiab] OR TARE[tiab] OR radioembolis*[tiab] OR radio-emboliz*[tiab] OR radio-embolis*[tiab] OR selective internal radiation therap*[tiab] OR selective internal radiotherap*[tiab] OR selective internal RT[tiab] OR selective internal radionuclide therap*[tiab] OR selective intraarterial radionuclide therap*[tiab] OR SIRT[tiab] OR intra-arterial chemotherap*[tiab] OR intraarterial chemotherap*[tiab] OR radiofrequency ablat*[tiab] OR regional infusion*[tiab] OR hepatic infusion*[tiab] OR arterial infusion*[tiab] OR arterial cytostatic infusion*[tiab] OR locoregional chemotherap*[tiab] OR intra-arterial catheter*[tiab] OR intraarterial catheter*[tiab] OR intrahepatic arterial chemo*[tiab] OR regional chemotherap*[tiab] OR transarterial immunochemotherap*[tiab] OR transarterial immuno-chemotherap*[tiab] OR local immunochemotherap*[tiab] OR local immuno-chemotherap*[tiab] OR intra-arterial chemo-infusion*[tiab] OR chemofiltration*[tiab] OR locoregional chemotherap*[tiab] OR arterial infusion chemotherap*[tiab] OR loco-regional cancer therap*[tiab] OR locoregional cancer therap*[tiab] OR hepatic artery infusion*[tiab] OR transarterial emboliz*[tiab] OR transarterial embolis*[tiab] OR bland emboliz*[tiab] OR bland embolis*[tiab]).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aarts, B.M., Muñoz, F.M.G., Wildiers, H. et al. Intra-Arterial Therapies for Liver Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. Cardiovasc Intervent Radiol (2021). https://doi.org/10.1007/s00270-021-02906-1

Download citation

Keywords

  • Breast neoplasm
  • Liver neoplasms
  • Intra-arterial infusion
  • Systematic review
  • Meta-analysis