Skip to main content

Advertisement

Log in

Percutaneous Ablative Therapies for the Management of Osteoid Osteomas: A Systematic Review and Meta-Analysis

  • Clinical Investigation
  • Non-Vascular Interventions
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate safety and efficacy of percutaneous ablative therapy for the treatment for osteoid osteomas.

Materials and Methods

PubMed database, Web of Science, and SCOPUS were searched from their inception until November 2019 for articles describing osteoid osteoma. Demographic data, success rates, pre- and post-procedure VAS scores, and complications were recorded. A random-effects meta-analyses of the VAS pain score at various time points were calculated.

Results

For radiofrequency ablation, VAS scores for pain at pre-procedure, 24–48 h, and 3–6 months yielded cumulative pain scores of 7.64 +/− 0.175, 0.78 +/− 0.186, and 0.02 +/− 0.0196, respectively. For cryoablation, VAS scores at pre-procedure, 24–48 h, and 3–6 months yielded cumulative pain scores of 8.46 +/− 0.549, 0.975 +/− 0.66, and 0.112 +/− 0.08, respectively. For laser ablation, VAS scores at pre-procedure and 24–48 h yielded cumulative pain scores of 4.94 +/− 1.42, and 0.506 +/− 0.268, respectively. For microwave ablation, VAS scores at pre-procedure, 24–48 h, and 3–6 months yielded cumulative pain scores of 6.14 +/− 1.07, 1.636 +/− 1.215, and 0 +/− 0.0, respectively. All ablation methods resulted in significant immediate and lasting pain reduction (p < 0.001).

Technical and clinical success rates and major complications for RFA, microwave ablation, laser ablation, and cryoablation did not differ significantly. Overall recurrence of bone pain at the same site occurred in 4.06% of all patients an average of 11 months post-procedure.

Conclusion

Percutaneous ablative therapies are safe and result in significant and lasting pain reduction as demonstrated through visual analog scale pain scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Singh DK, et al. CT-guided radiofrequency ablation of osteoid osteoma: established concepts and new ideas. Br J Radiol. 2020;93(1114):20200266.

    Article  Google Scholar 

  2. Szendroi M, et al. Intraarticular osteoid osteoma: clinical features, imaging results, and comparison with extraarticular localization. J Rheumatol. 2004;31(5):957–64.

    PubMed  Google Scholar 

  3. Kransdorf MJ, et al. Osteoid osteoma. Radiographics. 1991;11(4):671–96.

    Article  CAS  Google Scholar 

  4. Campanacci M. Osteoid osteoma. In: Bone and soft tissue tumors: clinical features, imaging, pathology and treatment. Vienna: Springer; 1999. p. 391-414

  5. Lindquester WS, Crowley J, Hawkins CM. Percutaneous thermal ablation for treatment of osteoid osteoma: a systematic review and analysis. Skeletal Radiol. 2020;49(9):1403–11.

    Article  Google Scholar 

  6. Cantwell CP, Obyrne J, Eustace S. Current trends in treatment of osteoid osteoma with an emphasis on radiofrequency ablation. Eur Radiol. 2004;14(4):607–17.

    Article  Google Scholar 

  7. Sim FH, Dahlin CD, Beabout JW. Osteoid-osteoma: diagnostic problems. J Bone Joint Surg Am. 1975;57(2):154–9.

    Article  CAS  Google Scholar 

  8. Jackson RP, Reckling FW, Mants FA. Osteoid osteoma and osteoblastoma. Similar histologic lesions with different natural histories. Clin Orthop Relat Res. 1977;128:303–13.

    Google Scholar 

  9. Greenspan A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical, imaging, pathologic, and differential considerations. Skeletal Radiol. 1993;22(7):485–500.

    Article  CAS  Google Scholar 

  10. Rosenthal DI, et al. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology. 1992;183(1):29–33.

    Article  CAS  Google Scholar 

  11. Vanderschueren GM, et al. Osteoid osteoma: factors for increased risk of unsuccessful thermal coagulation. Radiology. 2004;233(3):757–62.

    Article  Google Scholar 

  12. Igrec J et al. Treatment of osteoid osteoma—is RFA the future of osteoid osteoma therapy? Rofo 2020;192(S 01):S105–S106.

    Google Scholar 

  13. Soliman MM, et al. Technical and nidus-specific factors associated with adequacy of intraprocedural biopsy samples preceding radiofrequency ablation of osteoid osteoma. Clin Imaging. 2020;61:27–32.

    Article  Google Scholar 

  14. Simon CJ, Dupuy DE. Image-guided ablative techniques in pelvic malignancies: radiofrequency ablation, cryoablation, microwave ablation. Surg Oncol Clin N Am. 2005;14(2):419–31.

    Article  Google Scholar 

  15. Callstrom MR, et al. Painful metastases involving bone: percutaneous image-guided cryoablation–prospective trial interim analysis. Radiology. 2006;241(2):572–80.

    Article  Google Scholar 

  16. Ouzzani M, et al. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.

    Article  Google Scholar 

  17. Lanza E, et al. Osteoid osteoma treated by percutaneous thermal ablation: when do we fail? A systematic review and guidelines for future reporting. Cardiovasc Intervent Radiol. 2014;37(6):1530–9.

    Article  Google Scholar 

  18. Khalilzadeh O, et al. proposal of a new adverse event classification by the society of interventional radiology standards of practice committee. J Vasc Interv Radiol. 2017;28(10):1432-1437.e3.

    Article  Google Scholar 

  19. Suurmond R, van Rhee H, Hak T. Introduction, comparison, and validation of meta-essentials: a free and simple tool for meta-analysis. Res Synth Methods. 2017;8(4):537–53.

    Article  Google Scholar 

  20. Çakar M, et al. Osteoid osteoma treated with radiofrequency ablation. Adv Orthop. 2015;2015:807274–807274.

    Article  Google Scholar 

  21. Tomasian A, et al. Osteoid osteoma in older adults: clinical success rate of percutaneous image-guided thermal ablation. Clin Radiol. 2020;75(9):713.e11-713.e16.

    Article  CAS  Google Scholar 

  22. Whitmore MJ, et al. Cryoablation of Osteoid Osteoma in the Pediatric and Adolescent Population. J Vasc Interv Radiol. 2016;27(2):232–7 (quiz 238).

    Article  Google Scholar 

  23. Vietti Violi N, et al. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2018;3(5):317–25.

    Article  Google Scholar 

  24. Callstrom MR, Kurup AN. Percutaneous ablation for bone and soft tissue metastases—why cryoablation? Skeletal Radiol. 2009;38(9):835–9.

    Article  Google Scholar 

  25. Dodd GD, et al. Radiofrequency thermal ablation. Am J Roentgenol. 2001;177(4):777–82.

    Article  Google Scholar 

  26. Santiago E, et al. Percutaneous cryoablation for the treatment of osteoid osteoma in the adult population. Eur Radiol. 2018;28(6):2336–44.

    Article  Google Scholar 

  27. Prologo JD, et al. Natural history of mixed and motor nerve cryoablation in humans—a cohort analysis. J Vasc Interv Radiol. 2020;31(6):912-916.e1.

    Article  Google Scholar 

  28. Gangi A, et al. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology. 2007;242(1):293–301.

    Article  Google Scholar 

  29. Hinshaw JL, et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation–what should you use and why? Radiographics. 2014;34(5):1344–62.

    Article  Google Scholar 

  30. Noordin S, et al. Osteoid osteoma: contemporary management. Orthop Rev. 2018;10(3):7496–7496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik A. Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The protocol for this study was reviewed by the Institutional Review Board at our institution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugasundaram, S., Nadkarni, S., Kumar, A. et al. Percutaneous Ablative Therapies for the Management of Osteoid Osteomas: A Systematic Review and Meta-Analysis. Cardiovasc Intervent Radiol 44, 739–749 (2021). https://doi.org/10.1007/s00270-021-02804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-021-02804-6

Keywords

Navigation