Skip to main content
Log in

Transarterial Chemoembolization and Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma—a Systemic Review and Meta-Analysis

  • Scientific Paper (other)
  • Interventional Oncology
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript



Intrahepatic cholangiocarcinoma (ICC) has a poor prognosis, when unresectable; therefore, intra-arterial therapies (IAT) such as trans-arterial chemoembolization (TACE) and trans-arterial radioembolization (TARE) have been employed. With the present systematic review and meta-analysis, we aimed to analyse published studies to understand if one IAT can be superior to the alternative.

Materials and methods

A systematic search of PubMed and Web of Science databases was performed for articles published until 1 March 2020 relevant to IAT for ICC. Overall survival was the primary end point. Occurrence of clinical adverse events and tumour overall response were secondary outcome measures.


A total of 31 articles (of 793, n.1695 patients) were selected for data extraction, 13 were on TACE (906 patients) and 18 were on TARE (789 patients). Clinical and tumour characteristics showed moderate heterogeneity between the two groups. The median survival after TACE was 14.2 months while after TARE was 13.5 months (95%C.I.: 11.4–16.1). The survival difference was small (d = 0.112) at 1 year and negligible at 2 years (d = 0.028) and at 3 years (d = 0.049). The radiological objective response after TACE was 20.6% and after TARE was 19.3% (d = 0.032). Clinical adverse events occurred in 58.5% after TACE, more frequently than after TARE (43.0%, d = 0.314).


In conclusion, IATs are promising treatments for improving outcomes for patients with unresectable ICC. To date, TACE and TARE provide similar good outcomes, except for adverse events. Therefore, the decision about techniques is determined by ability to utilize these resources and patient specific factors (liver function or lesion dimension).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  1. Zhang H, Yang T, Wu M, Shen F. Intrahepatic cholangiocarcinoma: Epidemiology, risk factors, diagnosis and surgical management. Cancer Lett. 2016;379(2):198–205.

    CAS  PubMed  Google Scholar 

  2. Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control. 2017;24(3):1073274817729245.

    PubMed  PubMed Central  Google Scholar 

  3. Weber SM, Ribero D, O’Reilly EM, Kokudo N, Miyazaki M, Pawlik TM. Intrahepatic cholangiocarcinoma: expert consensus statement. HPB (Oxford). 2015;17(8):669–80.

    Google Scholar 

  4. Spolverato G, Vitale A, Cucchetti A, et al. Can hepatic resection provide a long-term cure for patients with intrahepatic cholangiocarcinoma? Cancer. 2015;121(22):3998–4006.

    PubMed  Google Scholar 

  5. Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–81.

    CAS  PubMed  Google Scholar 

  6. Boehm LM, Jayakrishnan TT, Miura JT, et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J Surg Oncol. 2015;111(2):213–20.

    PubMed  Google Scholar 

  7. Brunner TB, Seufferlein T. Radiation therapy in cholangiocellular carcinomas. Best Pract Res Clin Gastroenterol. 2016;30(4):593–602.

    PubMed  Google Scholar 

  8. Köhler M, Harders F, Lohöfer F, et al. Prognostic factors for overall survival in advanced intrahepatic cholangiocarcinoma treated with yttrium-90 radioembolization. J Clin Med. 2019;9(1):56. Published 2019 Dec 25.

  9. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–2012.

  10. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-W64.

  11. Cabibbo G, Cucchetti A, Cammà C, et al. Outcomes of hepatocellular carcinoma patients treated with sorafenib: a meta-analysis of Phase III trials. Future Oncol. 2019;15(29):3411–22.

    CAS  PubMed  Google Scholar 

  12. Beck JR, Kassirer JP, Pauker SG. A convenient approximation of life expectancy (the "DEALE"). I. Validation of the method. Am J Med. 73(6):883–888.

  13. Schwartz LH, Litière S, de Vries E, et al. RECIST 1.1-Update and clarification: From the RECIST committee. Eur J Cancer. 2016;62:132–137.

  14. Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2–10.

    PubMed  Google Scholar 

  15. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Google Scholar 

  16. Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York: Routledge; 1988.

    Book  Google Scholar 

  17. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28(25):3083–107.

    PubMed  PubMed Central  Google Scholar 

  18. Ben Abdelaziz R, Hafsi H, Hajji H, et al. Peripheral venous catheter complications in children: predisposing factors in a multicenter prospective cohort study [published correction appears in BMC Pediatr. 2018 Sep 24;18(1):307]. BMC Pediatr. 2017;17(1):208. Published 2017 Dec 19.

  19. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. Published 2014 Dec 19.

  20. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16. Published 2007 Jun 7.

  21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    CAS  PubMed  Google Scholar 

  22. Buettner S, Braat AJAT, Margonis GA, et al. Yttrium-90 Radioembolization in Intrahepatic Cholangiocarcinoma: A Multicenter Retrospective Analysis. J Vasc Interv Radiol. 2020;31(7):1035–43.

    PubMed  Google Scholar 

  23. Bargellini I, Mosconi C, Pizzi G, et al. Yttrium-90 radioembolization in unresectable intrahepatic cholangiocarcinoma: results of a multicenter retrospective study. Cardiovasc Intervent Radiol. 2020;43(9):1305–14.

    PubMed  Google Scholar 

  24. Ge Y, Jeong S, Luo GJ, et al. Transarterial chemoembolization versus percutaneous microwave coagulation therapy for recurrent unresectable intrahepatic cholangiocarcinoma: development of a prognostic nomogram. Hepatobiliary Pancreat Dis Int. 2020;19(2):138–46.

    PubMed  Google Scholar 

  25. White J, Carolan-Rees G, Dale M, et al. Yttrium-90 transarterial radioembolization for chemotherapy-refractory intrahepatic cholangiocarcinoma: a prospective. Observational Study J Vasc Interv Radiol. 2019;30(8):1185–92.

    PubMed  Google Scholar 

  26. Levillain H, Duran Derijckere I, Ameye L, et al. Personalised radioembolization improves outcomes in refractory intra-hepatic cholangiocarcinoma: a multicenter study. Eur J Nucl Med Mol Imaging. 2019;46(11):2270–9.

    PubMed  Google Scholar 

  27. Edeline J, Touchefeu Y, Guiu B, et al. Radioembolization Plus Chemotherapy for First-line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial [published online ahead of print, 2019 Oct 31]. JAMA Oncol. 2019;6(1):51–59

  28. Goerg F, Zimmermann M, Bruners P, Neumann U, Luedde T, Kuhl C. Chemoembolization with degradable starch microspheres for treatment of patients with primary or recurrent unresectable, locally advanced intrahepatic cholangiocarcinoma: a pilot study. Cardiovasc Intervent Radiol. 2019;42(12):1709–17.

    PubMed  Google Scholar 

  29. Reimer RP, Reimer P, Mahnken AH. Assessment of therapy response to transarterial radioembolization for liver metastases by means of post-treatment mri-based texture analysis. Cardiovasc Intervent Radiol. 2018;41(10):1545–56.

    PubMed  Google Scholar 

  30. Gangi A, Shah J, Hatfield N, et al. Intrahepatic cholangiocarcinoma treated with transarterial yttrium-90 glass microsphere radioembolization: results of a single institution retrospective study. J Vasc Interv Radiol. 2018;29(8):1101–8.

    PubMed  PubMed Central  Google Scholar 

  31. Shaker TM, Chung C, Varma MK, et al. Is there a role for Ytrrium-90 in the treatment of unresectable and metastatic intrahepatic cholangiocarcinoma? Am J Surg. 2018;215(3):467–70.

    PubMed  Google Scholar 

  32. Bourien H, Palard X, Rolland Y, et al. Yttrium-90 glass microspheres radioembolization (RE) for biliary tract cancer: a large single-center experience. Eur J Nucl Med Mol Imaging. 2019;46(3):669–76.

    CAS  PubMed  Google Scholar 

  33. Wright GP, Perkins S, Jones H, et al. Surgical resection does not improve survival in multifocal intrahepatic cholangiocarcinoma: a comparison of surgical resection with intra-arterial therapies. Ann Surg Oncol. 2018;25(1):83–90.

    PubMed  Google Scholar 

  34. Pandey A, Pandey P, Aliyari Ghasabeh M, et al. Unresectable Intrahepatic Cholangiocarcinoma: Multiparametric MR Imaging to Predict Patient Survival. Radiology. 2018;288(1):109–17.

    PubMed  Google Scholar 

  35. Aliberti C, Carandina R, Sarti D, et al. Chemoembolization with Drug-eluting Microspheres Loaded with Doxorubicin for the Treatment of Cholangiocarcinoma. Anticancer Res. 2017;37(4):1859–63.

    CAS  PubMed  Google Scholar 

  36. Lu Z, Liu S, Yi Y, et al. Serum gamma-glutamyl transferase levels affect the prognosis of patients with intrahepatic cholangiocarcinoma who receive postoperative adjuvant transcatheter arterial chemoembolization: A propensity score matching study. Int J Surg. 2017;37:24–8.

    PubMed  Google Scholar 

  37. Mosconi C, Gramenzi A, Ascanio S, et al. Yttrium-90 radioembolization for unresectable/recurrent intrahepatic cholangiocarcinoma: a survival, efficacy and safety study. Br J Cancer. 2016;115(3):297–302.

    PubMed  PubMed Central  Google Scholar 

  38. Soydal C, Kucuk ON, Bilgic S, Ibis E. Radioembolization with (90)Y resin microspheres for intrahepatic cholangiocellular carcinoma: prognostic factors. Ann Nucl Med. 2016;30(1):29–34.

    CAS  PubMed  Google Scholar 

  39. Filippi L, Pelle G, Cianni R, Scopinaro F, Bagni O. Change in total lesion glycolysis and clinical outcome after (90)Y radioembolization in intrahepatic cholangiocarcinoma. Nucl Med Biol. 2015;42(1):59–64.

    CAS  PubMed  Google Scholar 

  40. Camacho JC, Kokabi N, Xing M, et al. Evaluation Criteria in Solid Tumors and European Association for the Study of the Liver Criteria using delayed-phase imaging at an early time point predict survival in patients with unresectable intrahepatic cholangiocarcinoma following yttrium-90 radioembolization. J Vasc Interv Radiol. 2014;25:256–65.

    PubMed  Google Scholar 

  41. Mouli S, Memon K, Baker T, et al. Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: safety, response, and survival analysis. J Vasc Interv Radiol. 2013;24(8):1227–34.

    PubMed  PubMed Central  Google Scholar 

  42. Rafi S, Piduru SM, El-Rayes B, et al. Yttrium-90 radioembolization for unresectable standard-chemorefractory intrahepatic cholangiocarcinoma: survival, efficacy, and safety study. Cardiovasc Intervent Radiol. 2013;36(2):440–8.

    PubMed  Google Scholar 

  43. Scheuermann U, Kaths JM, Heise M, et al. Comparison of resection and transarterial chemoembolisation in the treatment of advanced intrahepatic cholangiocarcinoma–a single-center experience. Eur J Surg Oncol. 2013;39(6):593–600.

    CAS  PubMed  Google Scholar 

  44. Hoffmann RT, Paprottka PM, Schön A, et al. Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovasc Intervent Radiol. 2012;35(1):105–16.

    PubMed  Google Scholar 

  45. Kuhlmann JB, Euringer W, Spangenberg HC, et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur J Gastroenterol Hepatol. 2012;24(4):437–43.

    CAS  PubMed  Google Scholar 

  46. Vogl TJ, Naguib NN, Nour-Eldin NE, et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: Results and prognostic factors governing treatment success. Int J Cancer. 2012;131(3):733–40.

    CAS  PubMed  Google Scholar 

  47. Park SY, Kim JH, Yoon HJ, Lee IS, Yoon HK, Kim KP. Transarterial chemoembolization versus supportive therapy in the palliative treatment of unresectable intrahepatic cholangiocarcinoma. Clin Radiol. 2011;66(4):322–8.

    PubMed  Google Scholar 

  48. Kiefer MV, Albert M, McNally M, et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer. 2011;117(7):1498–505.

    CAS  PubMed  Google Scholar 

  49. Saxena A, Bester L, Chua TC, Chu FC, Morris DL. Yttrium-90 radiotherapy for unresectable intrahepatic cholangiocarcinoma: a preliminary assessment of this novel treatment option. Ann Surg Oncol. 2010;17(2):484–91.

    PubMed  Google Scholar 

  50. Shitara K, Ikami I, Munakata M, Muto O, Sakata Y. Hepatic arterial infusion of mitomycin C with degradable starch microspheres for unresectable intrahepatic cholangiocarcinoma. Clin Oncol (R Coll Radiol). 2008;20(3):241–6.

    CAS  Google Scholar 

  51. Aliberti C, Benea G, Tilli M, Fiorentini G. Chemoembolization (TACE) of unresectable intrahepatic cholangiocarcinoma with slow-release doxorubicin-eluting beads: preliminary results. Cardiovasc Intervent Radiol. 2008;31(5):883–8.

    PubMed  Google Scholar 

  52. Peng Z, Cao G, Hou Q, et al. The Comprehensive Analysis of Efficacy and Safety of CalliSpheres® Drug-Eluting Beads Transarterial Chemoembolization in 367 Liver Cancer Patients: A Multiple-Center. Cohort Study Oncol Res. 2020;28(3):249–71.

    PubMed  Google Scholar 

  53. Beuzit L, Edeline J, Brun V, et al. Comparison of choi criteria and response evaluation criteria in solid tumors (recist) for intrahepatic cholangiocarcinoma treated with glass-microspheres yttrium-90 selective internal radiation therapy (SIRT). Eur J Radiol. 2016;85(8):1445–52.

    PubMed  Google Scholar 

  54. Edeline J, Du FL, Rayar M, et al. Glass microspheres 90Y selective internal radiation therapy and chemotherapy as first-line treatment of intrahepatic cholangiocarcinoma. Clin Nucl Med. 2015;40(11):851–5.

    PubMed  Google Scholar 

  55. Rayar M, Sulpice L, Edeline J, et al. Intra-arterial yttrium-90 radioembolization combined with systemic chemotherapy is a promising method for downstaging unresectable huge intrahepatic cholangiocarcinoma to surgical treatment. Ann Surg Oncol. 2015;22(9):3102–8.

    CAS  PubMed  Google Scholar 

  56. Halappa VG, Bonekamp S, Corona-Villalobos CP, et al. Intrahepatic cholangiocarcinoma treated with local-regional therapy: quantitative volumetric apparent diffusion coefficient maps for assessment of tumor response. Radiology. 2012;264(1):285–94.

    PubMed  Google Scholar 

  57. Haug AR, Heinemann V, Bruns CJ, et al. 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres. Eur J Nucl Med Mol Imaging. 2011;38(6):1037–45.

    CAS  PubMed  Google Scholar 

  58. Ibrahim SM, Mulcahy MF, Lewandowski RJ, et al. Treatment of unresectable cholangiocarcinoma using yttrium-90 microspheres: results from a pilot study. Cancer. 2008;113(8):2119–28.

    CAS  PubMed  Google Scholar 

  59. Gusani NJ, Balaa FK, Steel JL, et al. Treatment of unresectable cholangiocarcinoma with gemcitabine-based transcatheter arterial chemoembolization (TACE): a single-institution experience. J Gastrointest Surg. 2008;12(1):129–37.

    PubMed  Google Scholar 

  60. Herber S, Otto G, Schneider J, et al. Transarterial chemoembolization (TACE) for inoperable intrahepatic cholangiocarcinoma. Cardiovasc Intervent Radiol. 2007;30(6):1156–65.

    Article  CAS  PubMed  Google Scholar 

  61. Hong K, Geschwind JF. Locoregional intra-arterial therapies for unresectable intrahepatic cholangiocarcinoma. Semin Oncol. 2010;37(02):110–7.

    PubMed  Google Scholar 

  62. Weber SM, Jarnagin WR, Klimstra D, DeMatteo RP, Fong Y, Blumgart LH. Intrahepatic cholangiocarcinoma: resectability, recurrence pattern, and outcomes. J Am Coll Surg. 2001;193(04):384–91.

    CAS  PubMed  Google Scholar 

  63. Tan JC, Coburn NG, Baxter NN, Kiss A, Law CH. Surgical management of intrahepatic cholangiocarcinoma–a population-based study. Ann Surg Oncol. 2008;15(02):600–8.

    PubMed  Google Scholar 

  64. Park J, Kim MH, Kim KP, et al. Natural history and prognostic factors of advanced cholangiocarcinoma without surgery, chemotherapy, or radiotherapy: a large-scale observational study. Gut Liver. 2009;3(04):298–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. National Comprehensive Cancer Network. Hepatobiliary Cancers (Version 2019). Available at: physician_gls/PDF/hepatobiliary.pdf

  66. Currie BM, Soulen MC. Decision Making: Intra-arterial Therapies for Cholangiocarcinoma-TACE and TARE. Semin Intervent Radiol. 2017;34(2):92–100.

    PubMed  PubMed Central  Google Scholar 

  67. Seidensticker R, Ricke J, Seidensticker M. Integration of chemoembolization and radioembolization into multimodal treatment of cholangiocarcinoma. Best Pract Res Clin Gastroenterol. 2015;29(02):319–32.

    CAS  PubMed  Google Scholar 

  68. Savic LJ, Chapiro J, Geschwind JH. Intra-arterial embolotherapy for intrahepatic cholangiocarcinoma: update and future prospects. Hepatobiliary Surg Nutr. 2017;6(1):7–21.;PMCID:PMC5332218.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kloeckner R, Ruckes C, Kronfeld K, et al. Selective internal radiotherapy (SIRT) versus transarterial chemoembolization (TACE) for the treatment of intrahepatic cholangiocellular carcinoma (CCC): study protocol for a randomized controlled trial. Trials. 2014;15:311.

    PubMed  PubMed Central  Google Scholar 

Download references


This study was not supported by any funding.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Cristina Mosconi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alessandro Cucchetti and Rita Golfieri share the senior authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosconi, C., Solaini, L., Vara, G. et al. Transarterial Chemoembolization and Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma—a Systemic Review and Meta-Analysis. Cardiovasc Intervent Radiol 44, 728–738 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: