Skip to main content
Log in

Percutaneous Microwave Ablation Versus Cryoablation in the Treatment of T1a Renal Tumors

  • Clinical Investigation
  • Non-Vascular Interventions
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Radiofrequency and cryoablation (Cryo) are the most widely used techniques for the treatment of T1a renal tumors in non-surgical candidates, yet microwave ablation (MWA) has been gaining popularity. In this study, we tested the hypothesis that MWA has comparable safety and efficacy to Cryo in the treatment of selected T1a renal masses.

Materials and Methods

A retrospective comparative analysis of two patient cohorts was carried out on 83 nodules in 72 consecutive patients treated using image-guided percutaneous ablation with either Cryo or MWA. Patient demographics, tumor histology and characteristics, technical success, procedure time, adverse events and complications, nephrometry score (mRENAL) and renal function were evaluated. Local recurrence was evaluated at 1, 6, 12 and 18–24 months.

Results

Fifty-one nodules were treated with Cryo and 32 with MWA (44 and 28 patients, respectively). No statistical differences were observed following Cryo or MWA in median tumor size (p = 0.6), mRENAL (p = 0.1) or technical success (p = 0.8). Median procedure time was significantly lower using microwave ablation (p = 0.003). Median follow-up time was similar in the two groups (22 and 20 months, respectively). Occurrence of complications did not differ (Cryo 5/51, MWA 2/32; p = 0.57), and probability of complications or technical success adjusted for mRENAL did not reach statistical significance (p = 0.6). Renal function was preserved in all patients regardless of techniques. Disease recurrence was observed in 3/47 and in 1/30 treated nodules in the Cryo and MWA groups, respectively, without reaching statistical significance (p = 0.06).

Conclusion

In the patient population studied, MWA showed comparable safety and efficacy relative to Cryo.

Level of Evidence

Level 3, Non-randomized cohort study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019. https://doi.org/10.1016/j.eururo.2018.08.036.

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clinic. 2018;10:394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  3. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. https://doi.org/10.1016/j.ejca.2012.12.027.

    Article  PubMed  CAS  Google Scholar 

  4. Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(5):706–20. https://doi.org/10.1093/annonc/mdz056.

    Article  PubMed  CAS  Google Scholar 

  5. Krokidis ME, Orsi F, Katsanos K, Helmberger T, Adam A. CIRSE guidelines on percutaneous ablation of small renal cell carcinoma. Cardiovasc Intervent Radiol. 2017;40(2):177–91. https://doi.org/10.1007/s00270-016-1531-y.

    Article  PubMed  Google Scholar 

  6. Clark TWI, Millward SF, Gervais DA, Goldberg SN, Grassi CJ, Kinney TB, et al. Reporting standards for percutaneous thermal ablation of renal cell carcinoma. J Vasc Interv Radiol. 2009;20(7 Suppl):S409–16. https://doi.org/10.1016/j.jvir.2009.04.013.

    Article  PubMed  Google Scholar 

  7. Campbell S, Uzzo RG, Allaf ME, Bass EB, Cadeddu JA, Chang A, et al. Renal mass and localized renal cancer: AUA guideline. J Urol. 2017;198(3):520–9. https://doi.org/10.1016/j.juro.2017.04.100.

    Article  PubMed  Google Scholar 

  8. Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24. https://doi.org/10.1016/j.eururo.2015.01.005.

    Article  PubMed  Google Scholar 

  9. Kunkle DA, Uzzo RG. Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer. 2008;113(10):2671–80. https://doi.org/10.1002/cncr.23896.

    Article  PubMed  Google Scholar 

  10. Cornelis FH, Marcelin C, Bernhard J-C. Microwave ablation of renal tumors: a narrative review of technical considerations and clinical results. Diagn Interv Imaging. 2017;98(4):287–97. https://doi.org/10.1016/j.diii.2016.12.002.

    Article  PubMed  CAS  Google Scholar 

  11. McCarthy CJ, Gervais DA. Decision making: thermal ablation options for small renal masses. Semin Intervent Radiol. 2017;34(2):167–75. https://doi.org/10.1055/s-0037-1602708.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chan P, Vélasco S, Vesselle G, Boucebci S, Herpe G, Debaene B, et al. Percutaneous microwave ablation of renal cancers under CT guidance: safety and efficacy with a 2-year follow-up. Clin Radiol. 2017;72(9):786–92. https://doi.org/10.1016/j.crad.2017.03.029.

    Article  PubMed  CAS  Google Scholar 

  13. Choi SH, Kim JW, Kim JH, Kim KW. Efficacy and safety of microwave ablation for malignant renal tumors: an updated systematic review and meta-analysis of the literature since 2012. Korean J Radiol. 2018;19(5):938–49. https://doi.org/10.3348/kjr.2018.19.5.938.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hinshaw JL, Louis Hinshaw J, Lubner MG, Ziemlewicz TJ, Lee FT, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation—What Should you use and why? Radiographics. 2014;34(5):1344–62. https://doi.org/10.1148/rg.345140054.

    Article  PubMed  Google Scholar 

  15. Alonzo M, Bos A, Bennett S, Ferral H. The EmprintTM ablation system with ThermosphereTM technology: one of the newer next-generation microwave ablation technologies. Semin Intervent Radiol. 2015;32(4):335–8. https://doi.org/10.1055/s-0035-1564811.

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Cobelli F, Marra P, Ratti F, Ambrosi A, Colombo M, Damascelli A, et al. Microwave ablation of liver malignancies: comparison of effects and early outcomes of percutaneous and intraoperative approaches with different liver conditions: new advances in interventional oncology: state of the art. Med Oncol. 2017;34(4):49. https://doi.org/10.1007/s12032-017-0903-8.

    Article  PubMed  Google Scholar 

  17. Patel IJ, Davidson JC, Nikolic R, Salazar GM, Schwartzberg MS, Walker TG, Saad WA. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol. 2012;23(6):727–36. https://doi.org/10.1016/j.jvir.2012.02.012.

    Article  PubMed  Google Scholar 

  18. Ierardi AM, Puliti A, Angileri SA, Petrillo M, Duka E, Floridi C, et al. Microwave ablation of malignant renal tumours: intermediate-term results and usefulness of RENAL and mRENAL scores for predicting outcomes and complications. Med Oncol. 2017;34(5):97. https://doi.org/10.1007/s12032-017-0948-8.

    Article  PubMed  Google Scholar 

  19. Filippiadis DK, Binkert C, Pellerin O, Hoffmann RT, Krajina A, Pereira PL. Cirse quality assurance document and standards for classification of complications: the cirse classification system. Cardiovasc Intervent Radiol. 2017;40(8):1141–6. https://doi.org/10.1007/s00270-017-1703-4.

    Article  PubMed  CAS  Google Scholar 

  20. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD 3rd, Dupuy DE, Gervais DA, Gillams AR, Kane RA, Lee FT Jr, Livraghi T, McGahan J, Phillips DA, Rhim H, Silverman SG, Solbiati L, Vogl TJ, Wood BJ, Vedantham S, Sacks D. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol. 2009;20(7 Suppl):S377–90. https://doi.org/10.1016/j.jvir.2009.04.011.

    Article  PubMed  Google Scholar 

  21. Filippiadis DK, Gkizas C, Chrysofos M, Siatelis A, Velonakis G, Alexopoulou E, et al. Percutaneous microwave ablation of renal cell carcinoma using a high power microwave system: focus upon safety and efficacy. Int J Hyperthermia. 2018;34(7):1077–81. https://doi.org/10.1080/02656736.2017.1408147.

    Article  PubMed  CAS  Google Scholar 

  22. Hao G, Hao Y, Cheng Z, Zhang X, Cao F, Yu X, et al. Local tumor progression after ultrasound-guided percutaneous microwave ablation of stage T1a renal cell carcinoma: risk factors analysis of 171 tumors. Int J Hyperthermia. 2018;35(1):62–70. https://doi.org/10.1080/02656736.2018.1475684.

    Article  PubMed  Google Scholar 

  23. Martin J, Athreya S. Meta-analysis of cryoablation versus microwave ablation for small renal masses: is there a difference in outcome? Diagn Interv Radiol. 2013;19(6):501–7. https://doi.org/10.5152/dir.2013.13070.

    Article  PubMed  Google Scholar 

  24. Yang Q, Meng F, Li K, Wang T, Nie Q, Che Z, Liu M, Sun Y, Zhao L. Safety and efficacy of thermal ablation for small renal masses in solitary kidney: evidence from meta-analysis of comparative studies. PLoS ONE. 2015;10(6):e0131290. https://doi.org/10.1371/journal.pone.0131290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhou W, Arellano RS. Thermal ablation of T1c renal cell carcinoma: a comparative assessment of technical performance, procedural outcome, and safety of microwave ablation, radiofrequency ablation, and cryoablation. J Vasc Interv Radiol. 2018;29(7):943–51. https://doi.org/10.1016/j.jvir.2017.12.020.

    Article  PubMed  Google Scholar 

  26. Buy X, Lang H, Garnon J, Sauleau E, Roy C, Gangi A. Percutaneous renal cryoablation: prospective experience treating 120 consecutive tumors. AJR Am J Roentgenol. 2013;201:1353–61. https://doi.org/10.2214/AJR.13.11084.

    Article  PubMed  Google Scholar 

  27. Katsanos K, Mailli L, Krokidis M, McGrath A, Sabharwal T, Adam A. Systematic review and meta-analysis of thermal ablation versus surgical nephrectomy for small renal tumours. Cardiovasc Intervent Radiol. 2014;37(2):427–37. https://doi.org/10.1007/s00270-014-0846-9.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou W, Herwald SE, McCarthy C, Uppot RN, Arellano RS. Radiofrequency ablation, cryoablation, and microwave ablation for T1a renal cell carcinoma: a comparative evaluation of therapeutic and renal function outcomes. J Vasc Interv Radiol. 2019;30:1035–42. https://doi.org/10.1016/j.jvir.2018.12.013.

    Article  PubMed  Google Scholar 

  29. Astani SA, Brown ML, Steusloff K. Comparison of procedure costs of various percutaneous tumor ablation modalities. Radiol Manag. 2014;36(4):12–7.

    Google Scholar 

  30. Camacho JC, Kokabi N, Xing M, Master V, Pattaras J, Mittal P, et al. R.E.N.A.L (Radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines) nephrometry score predicts early tumor recurrence and complications after percutaneous ablation: a 5-year experience. J Vasc Interv Radiol. 2015;26(5):686-93. https://doi.org/10.1016/j.jvir.2015.01.008.

    Article  PubMed  Google Scholar 

  31. Mouli SK, McDevitt JL, Su Y-K, Ragin AB, Gao Y, Nemcek AA Jr, et al. Analysis of the RENAL and mRENAL scores and the relative importance of their components in the prediction of complications and local progression after percutaneous renal cryoablation. J Vasc Interv Radiol. 2017;28(6):860–7. https://doi.org/10.1016/j.jvir.2016.12.1224.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco De Cobelli.

Ethics declarations

Conflict of interest

All authors declare that they have non conflict of interest.

Consent for Publication

Consent for publication was obtained within a specific ICF form.

Ethical Approval

Even though the study is retrospective, all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards and approved by the Institutions’ Ethics Committee.

Informed Consent

Informed consent was obtained from all individual participants included in the study or waivered according to indications of the local Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Cobelli, F., Papa, M., Panzeri, M. et al. Percutaneous Microwave Ablation Versus Cryoablation in the Treatment of T1a Renal Tumors. Cardiovasc Intervent Radiol 43, 76–83 (2020). https://doi.org/10.1007/s00270-019-02313-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02313-7

Keywords

Navigation