Radioembolization with 90Y Resin Microspheres of Neuroendocrine Liver Metastases: International Multicenter Study on Efficacy and Toxicity



Radioembolization of liver metastases of neuroendocrine neoplasms (NEN) has shown promising results; however, the current literature is of limited quality. A large international, multicentre retrospective study was designed to address several shortcomings of the current literature.


244 NEN patients with different NEN grades were included.


Primary outcome parameters were radiologic response 3 and 6 months after treatment according to RECIST 1.1 and mRECIST. Secondary outcome parameters included clinical response, clinical and biochemical toxicities.


Radioembolization resulted in CR in 2%, PR in 14%, SD in 75% and PD 9% according to RECIST 1.1 and in CR in 8%, PR in 35%, SD in 48% and PD in 9% according to mRECIST. Objective response rates improved over time in 20% and 26% according to RECIST 1.1. and mRECIST, respectively. Most common new grade 3–4 biochemical toxicity was lymphocytopenia (6.7%). No unexpected clinical toxicities occurred. Radioembolization-specific complications occurred in < 4%. In symptomatic patients, improvement and resolution of symptoms occurred in 44% and 34%, respectively. Median overall survival from first radioembolization was 3.7, 2.7 and 0.7 years for G1, G2 and G3, respectively. Objective response is independent of NEN grade or primary tumour origin. Significant prognostic factors for survival were NEN grade/Ki67 index, ≥ 75% intrahepatic tumour load, the presence of extrahepatic disease and disease control rate according to RECIST 1.1.


Safety and efficacy of radioembolization in NEN patients was confirmed with a high disease control rate of 91% in progressive patients and alleviation of NEN-related symptoms in 79% of symptomatic patients.

Level of evidence


This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Heetfeld M, Chougnet CN, Olsen IH, et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015;22(4):657–64.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endcr Pathol. 2014;25(2):186–92.

    Article  CAS  Google Scholar 

  3. 3.

    Pavel M, Baudin E, Couvelard A, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Lawrence B, Gustafsson BI, Chan A, et al. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40(1):1–18.

    Article  PubMed  Google Scholar 

  5. 5.

    Frilling A, Li J, Malamutmann E, Schmid KW, et al. Treatment of liver metastases from neuroendocrine tumours in relation to the extent of hepatic disease. Br J Surg. 2009;96(2):175–84.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Strosberg JR, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Eng J Med. 2017;376(2):125–35.

    Article  CAS  Google Scholar 

  7. 7.

    Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387:968–77.

    Article  CAS  Google Scholar 

  8. 8.

    Caplin ME, Pavel M, Ćwikła JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Eng J Med. 2014;371(3):224–33.

    Article  CAS  Google Scholar 

  9. 9.

    Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Eng J Med. 2011;364(6):501–13.

    Article  CAS  Google Scholar 

  10. 10.

    Frilling A, Modlin IM, Kidd M, et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 2014;15(1):e8–21.

    Article  PubMed  Google Scholar 

  11. 11.

    Devcic Z, Rosenberg J, Braat AJAT, et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. J Nucl Med. 2014;55(9):1404–10.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Kennedy AS, Bester L, Salem R, et al. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HBP (Oxford). 2015;17(1):29–37.

    Article  Google Scholar 

  13. 13.

    Lam MGEHLJ, Iagaru AH, Goris ML, Sze DY. Safety of repeated yttrium-90 radioembolization. Cardiovasc Intervent Radiol. 2013;36(5):1320–8.

    Article  PubMed  Google Scholar 

  14. 14.

    Salem R, Lewandowski RJ, Gates VL, et al. Research reporting standards for radioembolization of hepatic malignancies. J Vasc Interv Radiol. 2011;22(3):265–78.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Response Evaluation Criteria In Solid Tumors. Accessed March 2016.

  16. 16.

    Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60.

    Article  CAS  Google Scholar 

  17. 17.

    USA NCI. Common terminology criteria in adverse events, version 4.03 (CTCAE v4.03). NIH. 2010. Accessed March 2016.

  18. 18.

    Ludwig JM, Ambinder EM, Ghodadra 3, et al. Lung shunt fraction prior to yttrium-90 radioembolization predicts survival in patients with neuroendocrine liver metastases: single-center prospective analysis. Cardiovasc Intervent Radiol. 2016;39(7):1007–14.

  19. 19.

    Sommer WH, Ceelen F, Garcia-Albeniz X, et al. Defining predictors for long progression-free survival after radioembolisation of hepatic metastases of neuroendocrine origin. Eur Radiol. 2013;23(11):3094–103.

    Article  PubMed  Google Scholar 

  20. 20.

    Peker A, Çiçek O, Soydal Ç, et al. Radioembolization with yttrium-90 resin microspheres for neuroendocrine tumor liver metastases. Diagn Interv Radiol. 2015;21(1):54–9.

    Article  PubMed  Google Scholar 

  21. 21.

    Singla S, LeVea CM, Pokuri VK, et al. Ki67 score as a potential predictor in the selection of liver-directed therapies for metastatic neuroendocrine tumors: a single institutional experience. J Gastrointest Oncol. 2016;7(3):441–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Cao CQ, Yan TD, Bester L, et al. Radioembolization with yttrium microspheres for neuroendocrine tumour liver metastases. Br J Surg. 2010;97(4):537–43.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Chen JX, Rose S, White SB, et al. Embolotherapy for neuroendocrine tumor liver metastases: prognostic factors for hepatic progression-free survival and overall survival. Cardiovasc Intervent Radiol. 2017;40(1):69–80.

    Article  PubMed  Google Scholar 

  24. 24.

    Barbier CE, Garske-Román U, Sandström M, et al. Selective internal radiation therapy in patients with progressive neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging. 2016;43(8):1425–31.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Kennedy AS, Dezarn WA, McNeillie P, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol. 2008;31(3):271–9.

    Article  PubMed  Google Scholar 

  26. 26.

    Saxena A, Chua TC, Bester L, et al. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg. 2010;251(5):910–6.

    Article  PubMed  Google Scholar 

  27. 27.

    Ozao-Choy J, Friedman ML, Kim AS, et al. Radioembolization for treatment of liver metastases from neuroendocrine tumors: correlation with imaging and biomarkers. Pancreas. 2013;42(2):358–60.

    Article  PubMed  Google Scholar 

  28. 28.

    Tomozawa Y, Jahangiri Y, Pathak P, Kolbeck KJ, Schenning RC, Kaufman JA, Farsad K. Long-term toxicity after transarterial radioembolization with yttrium-90 using resin microspheres for neuroendocrine tumor liver metastases. J Vasc Interv Radiol. 2018;29(6):858–65.

    Article  PubMed  Google Scholar 

  29. 29.

    Kennedy AS, McNeillie P, Dezarn WA, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys. 2009;74(5):1494–500.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Elschot M, Nijsen JF, Lam MGEH, et al. (99m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with 166Ho-microspheres. Eur J Nucl Med Mol Imaging. 2014;41(10):1965–75.

    Article  CAS  Google Scholar 

  31. 31.

    Soulen MC, van Houten D, Teitelbaum UR, Damjanov N, Cengel KA, Metz DC. Safety and feasibility of integrating yttrium-90 radioembolization with capecitabine-temozolomide for grade 2 liver-dominant metastatic neuroendocrine tumors. Pancreas. 2018;47(8):980–4.

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Braat AJAT, Kwekkeboom DJ, Kam BLR, et al. Additional hepatic 166Ho-radioembolization in patients with neuroendocrine tumours treated with 177Lu-DOTATATE; a single center, interventional, non-randomized, non-comparative, open label, phase II study (HEPAR PLUS trial). BMC Gastroenterol. 2018;18(1):84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mikell JK, Mahvash A, Siman W, et al. Selective internal radiation therapy with yttrium-90 glass microspheres: biases and uncertainties in absorbed dose calculations between clinical dosimetry models. Int J Radiat Oncol Biol Phys. 2016;96(4):888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Garin E, Lenoir L, Edeline J, et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging. 2013;40(7):1057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Smits MLJ, Elschot M, Sze DY, et al. Radioembolization dosimetry: the road ahead. Cardiovasc Intervent Radiol. 2015;38(2):261–9.

    Article  PubMed  Google Scholar 

  36. 36.

    Chansanti O, Jahangiri Y, Matsui Y, et al. tumor dose response in yttrium-90 resin microsphere embolization for neuroendocrine liver metastases: a tumor-specific analysis with dose estimation using SPECT-CT. J Vasc Interv Radiol. 2017;28(11):1528–35.

    Article  PubMed  Google Scholar 

  37. 37.

    Fidelman N, Kerlan RK Jr, Hawkins RA, et al. 90Y glass microspheres for the treatment of unresectable metastatic liver disease from chemotherapy-refractory gastrointestinal cancers: a pilot study. J Gastrointest Cancer. 2014;45(2):168–80.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Turkmen C, Ucar A, Poyanli A, et al. Initial outcome after selective intraarterial radionuclide therapy with yttrium-90 microspheres as salvage therapy for unresectable metastatic liver disease. Cancer Biother Radiopharm. 2013;28(7):534–40.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Cramer B, Xing M, Kim HS. prospective longitudinal quality of life assessment in patients with neuroendocrine tumor liver metastases treated with 90Y radioembolization. Clin Nucl Med. 2016;41(12):e493–7.

    Article  PubMed  Google Scholar 

Download references


Travel expenses and accommodations of AJATB were partially covered by Sirtex Medical Europe, producer of SIR-spheres. Remaining travel expenses were granted by the Girard de Mielet van Coehoorn Foundation (Grant of the Board of Directors UMC Utrecht, the Netherlands). Both parties have no access to the data and have not been involved in data analysis or in the writing of the manuscript.

Author information



Corresponding author

Correspondence to A. J. A. T. Braat.

Ethics declarations

Conflict of interest

C.M.D. has acted as a consultant for Sirtex, Bayer Healthcare and Ipsen. A.F. receives research funding from Ipsen, Novartis and Sirtex Medical. D.B.B is a consultant for BTG, receives research funding from Sirtex and has served on a speaker’s bureau for Boston Scientific. D.Y.S. has acted as consultant for BTG, Boston Scientific, Amgen, EmbolX and Viralytics. M.G.E.H.L. has acted as a consultant for BTG, Sirtex, Mirada and Bayer Healthcare. All other authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braat, A.J.A.T., Kappadath, S.C., Ahmadzadehfar, H. et al. Radioembolization with 90Y Resin Microspheres of Neuroendocrine Liver Metastases: International Multicenter Study on Efficacy and Toxicity. Cardiovasc Intervent Radiol 42, 413–425 (2019).

Download citation


  • Radioembolization
  • SIRT
  • NEN
  • NET
  • Neuroendocrine tumor