CardioVascular and Interventional Radiology

, Volume 41, Issue 7, pp 1100–1105 | Cite as

Magnetic Particle Imaging Guided Real-Time Percutaneous Transluminal Angioplasty in a Phantom Model

  • Stefan Herz
  • Patrick Vogel
  • Philipp Dietrich
  • Thomas Kampf
  • Martin A. Rückert
  • Ralph Kickuth
  • Volker C. Behr
  • Thorsten A. Bley
Technical Note



To investigate the potential of real-time magnetic particle imaging (MPI) to guide percutaneous transluminal angioplasty (PTA) of vascular stenoses in a phantom model.

Materials and Methods

Experiments were conducted on a custom-built MPI scanner. Vascular stenosis phantoms consisted of polyvinyl chloride tubes (inner diameter 8 mm) prepared with a centrally aligned cable tie to form ~ 50% stenoses. MPI angiography for visualization of stenoses was performed using the superparamagnetic iron oxide nanoparticle-based contrast agent Ferucarbotran (10 mmol (Fe)/l). Balloon catheters and guidewires for PTA were visualized using custom-made lacquer markers based on Ferucarbotran. Stenosis dilation (n = 3) was performed by manually inflating the PTA balloon with diluted Ferucarbotran. An online reconstruction framework was implemented for real-time imaging with very short latency time.


Visualization of stenosis phantoms and guidance of interventional instruments in real-time (4 frames/s, ~ 100 ms latency time) was possible using an online reconstruction algorithm. Labeling of guidewires and balloon catheters allowed for precise visualization of instrument positions.


Real-time MPI-guided PTA in a phantom model is feasible.


Ferucarbotran Magnetic particle imaging Percutaneous transluminal angioplasty Real-time Superparamagnetic nanoparticles 



The project underlying this report was partially funded by the German Research Foundation (BE-5293/1-1).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

270_2018_1955_MOESM1_ESM.wmv (8.7 mb)
Supplementary material 1 (WMV 8916 kb)


  1. 1.
    Modan B, Keinan L, Blumstein T, Sadetzki S. Cancer following cardiac catheterization in childhood. Int J Epidemiol. 2000;29:424–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111:1368–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Bartorelli AL, Marenzi G. Contrast-induced nephropathy. J Interv Cardiol. 2008;21:74–85.CrossRefPubMedGoogle Scholar
  4. 4.
    Krombach GA, Wehner M, Perez-Bouza A, Kaimann L, Kinzel S, Plum T, et al. Magnetic resonance-guided angioplasty with delivery of contrast-media doped solutions to the vessel wall: an experimental study in swine. Investig Radiol. 2008;43:530–7.CrossRefGoogle Scholar
  5. 5.
    Le Blanche AF, Rossert J, Wassef M, Lévy B, Bigot JM, Boudghene F. MR-Guided PTA in experimental bilateral rabbit renal artery stenosis and MR angiography follow-up versus histomorphometry. Cardiovasc Intervent Radiol. 2000;23:368–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Raman VK, Lederman RJ. Interventional cardiovascular magnetic resonance imaging. Trends Cardiovasc Med. 2007;17:196–202.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rydahl C, Thomsen HS, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Investig Radiol. 2008;43:141–4.CrossRefGoogle Scholar
  8. 8.
    Thomsen HS. Nephrogenic systemic fibrosis: history and epidemiology. Radiol Clin N Am. 2009;47:827–831-vi.CrossRefPubMedGoogle Scholar
  9. 9.
    Lawaczeck R, Bauer H, Frenzel T, Hasegawa M, Ito Y, Kito K, et al. Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Acta Radiol. 1997;38:584–97.PubMedGoogle Scholar
  10. 10.
    Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435:1214–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, et al. Magnetic particle imaging: current developments and future directions. Int J Nanomed. 2015;10:3097–114.CrossRefGoogle Scholar
  13. 13.
    Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol. 2009;54:L1–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Vogel P, Rückert MA, Klauer P, Kullmann WH, Jakob PM, Behr VC. First in vivo traveling wave magnetic particle imaging of a beating mouse heart. Phys Med Biol. 2016;61:6620–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Sedlacik J, Frölich A, Spallek J, Forkert ND, Faizy TD, Werner F, et al. Magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics. PLoS ONE. 2016;11:e0160097.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Herz S, Vogel P, Kampf T, Rückert MA, Veldhoen S, Behr VC, et al. Magnetic particle imaging for quantification of vascular stenoses: a phantom study. IEEE Trans Med Imaging. 2017;37(1):61–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Haegele J, Rahmer J, Gleich B, Borgert J, Wojtczyk H, Panagiotopoulos N, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology. 2012;265:933–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Salamon J, Hofmann M, Jung C, Kaul MG, Werner F, Them K, et al. Magnetic particle/magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach. PLoS ONE. 2016;11:e0156899.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Knopp T, Hofmann M. Online reconstruction of 3D magnetic particle imaging data. Phys Med Biol. 2016;61:N257–67.CrossRefPubMedGoogle Scholar
  20. 20.
    Vogel P, Rückert MA, Klauer P, Herz S, Kampf T, Bley TA, et al. Real-time 3D dynamic rotating slice-scanning mode for traveling wave MPI. Int J Magn Part Imaging. 2017;3:1706001.Google Scholar
  21. 21.
    Vogel P, Herz S, Kampf T, Rückert MA, Bley TA, Behr VC. Low latency real-time reconstruction for MPI systems. Int J Magn Part Imaging. 2017;3:8.Google Scholar
  22. 22.
    Saritas EU, Goodwill PW, Croft LR, Konkle JJ, Lu K, Zheng B, et al. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson. 2013;229:116–26.CrossRefPubMedGoogle Scholar
  23. 23.
    Vogel P, Rückert MA, Klauer P, Kullmann WH, Jakob PM, Behr VC. Traveling wave magnetic particle imaging. IEEE Trans Med Imaging. 2014;33:400–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Vogel P, Lother S, Rückert MA, Kullmann WH, Jakob PM, Fidler F, et al. MRI meets MPI: a bimodal MPI-MRI tomograph. IEEE Trans Med Imaging. 2014;33:1954–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Vogel P, Rückert MA, Klauer P, Kullmann WH, Jakob PM, Behr VC. Superspeed traveling wave magnetic particle imaging. IEEE Trans Magn. 2015;51(2):6501603.Google Scholar
  26. 26.
    Zheng B, Vazin T, Goodwill PW, Conway A, Verma A, Saritas EU, et al. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep. 2015;5:14055.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dössel O, Bohnert J. Safety considerations for magnetic fields of 10 mT to 100 mT amplitude in the frequency range of 10 kHz to 100 kHz for magnetic particle imaging. Biomed Eng. 2013;58:611–21.CrossRefGoogle Scholar
  28. 28.
    Saritas EU, Goodwill PW, Zhang GZ, Conolly SM. Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging. 2013;32:1600–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Duschka RL, Wojtczyk H, Panagiotopoulos N, Haegele J, Bringout G, Buzug TM, et al. Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI)—first experiences. J Healthc Eng. 2014;5:79–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Vogel P, Rückert MA, Kemp SJ, Khandhar AP, Ferguson RM, Vilter A, et al. Micro traveling wave MPI—initial results with optimized tracer LS-008. In: Proceedings of IWMPI. p. 139.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2018

Authors and Affiliations

  1. 1.Department of Diagnostic and Interventional RadiologyUniversity Hospital WürzburgWürzburgGermany
  2. 2.Department of Experimental Physics VUniversity of WürzburgWürzburgGermany
  3. 3.Department of Diagnostic and Interventional NeuroradiologyUniversity Hospital WürzburgWürzburgGermany

Personalised recommendations