Skip to main content
Log in

Pickering-Emulsion for Liver Trans-Arterial Chemo-Embolization with Oxaliplatin

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticles can adsorb at the water/oil interface to stabilize the emulsion (forming Pickering-emulsion). The purpose of this study was to compare the release profiles of oxaliplatin from Pickering-emulsion and Lipiodol-emulsion.

Materials/Methods

Pickering-emulsions and Lipiodol-emulsions were both formulated with oxaliplatin (5 mg/mL) and Lipiodol (water/oil ratio: 1/3). For Pickering-emulsion only, PLGA nanoparticles (15 mg/mL) were dissolved into oxaliplatin before formulation. In vitro release of oxaliplatin from both emulsions was evaluated. Then, oxaliplatin was selectively injected into left hepatic arteries of 18 rabbits bearing VX2 liver tumors using either 0.5 mL Pickering-emulsion (n = 10) or 0.5 mL Lipiodol-emulsion (n = 8). In each group, half of the rabbits were killed at 1 h and half at 24 h. Mass spectrometry was used to quantify drug pharmacokinetics in blood and resulting tissue (tumors, right, and left livers) oxaliplatin concentrations.

Results

Pickering-emulsion demonstrated a slow oxaliplatin release compared to Lipiodol-emulsion (1.5 ± 0.2 vs. 12.0 ± 6% at 1 h and 15.8 ± 3.0 vs. 85.3 ± 3.3% at 24 h) during in vitro comparison studies. For animal model studies, the plasmatic peak (Cmax) and the area under the curve (AUC) were significantly lower with Pickering-emulsion compared to Lipiodol-emulsion (Cmax = 0.49 ± 0.14 vs. 1.08 ± 0.41 ng/mL, p = 0.01 and AUC = 19.8 ± 5.9 vs. 31.8 ± 14.9, p = 0.03). This resulted in significantly lower oxaliplatin concentrations in tissues at 1 h with Pickering-emulsion but higher ratio between tumor and left liver at 24 h (43.4 vs. 14.5, p = 0.04).

Conclusion

Slow release of oxaliplatin from Pickering-emulsion results in a significant decrease in systemic drug exposure and higher ratio between tumor and left liver oxaliplatin concentration at 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Llovet JM, Ducreux M, Lencioni R, et al. EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.

    Article  Google Scholar 

  2. Takayasu K, Arii S, Matsuo N, et al. Comparison of CT findings with resected specimens after chemoembolization with iodized oil for hepatocellular carcinoma. AJR Am J Roentgenol. 2000;175:699–704.

    Article  CAS  PubMed  Google Scholar 

  3. de Baere T, Arai Y, Lencioni R, et al. Treatment of liver tumors with Lipiodol TACE: technical recommendations from experts opinion. Cardiovasc Intervent Radiol. 2016;39:334–43.

    Article  PubMed  Google Scholar 

  4. Gaba RC, Baumgarten S, Omene BO, et al. Ethiodized oil uptake does not predict doxorubicin drug delivery after chemoembolization in VX2 liver tumors. J Vasc Interv Radiol. 2012;23:265–73.

    Article  PubMed  Google Scholar 

  5. Varela M, Real MI, Burrel M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474–81.

    Article  CAS  PubMed  Google Scholar 

  6. Jordan O, Denys A, De Baere T, et al. Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan. J Vasc Interv Radiol. 2010;21:1084–90.

    Article  PubMed  Google Scholar 

  7. Liao XF, Yi JL, Li XR, et al. Angiogenesis in rabbit hepatic tumor after transcatheter arterial embolization. World J Gastroenterol. 2004;10:1885–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Baere T, Zhang X, Aubert B, et al. Quantification of tumor uptake of iodized oils and emulsions of iodized oils: experimental study. Radiology. 1996;201:731–5.

    Article  PubMed  Google Scholar 

  9. de Baere T, Dufaux J, Roche A, et al. Circulatory alterations induced by intra-arterial injection of iodized oil and emulsions of iodized oil and doxorubicin: experimental study. Radiology. 1995;194:165–70.

    Article  CAS  PubMed  Google Scholar 

  10. Pickering EC. Emulsion. J Chem Soc. 1907;91:2001–21.

    Article  Google Scholar 

  11. Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspension’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). Preliminary account. Proc R Soc Lond. 1903;72:156–64.

    Article  CAS  Google Scholar 

  12. Lee JJ, Chu E. An update on treatment advances for the first-line therapy of metastatic colorectal cancer. Cancer J. 2007;13:276–81.

    Article  CAS  PubMed  Google Scholar 

  13. Fiorentini G, Sarti D, Aliberti C, et al. Multidisciplinary approach of colorectal cancer liver metastases. World J Clin Oncol. 2017;8:190–202.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cao H, Phan H, Yang LX. Improved chemotherapy for hepatocellular carcinoma. Anticancer Res. 2012;32:1379–86.

    CAS  PubMed  Google Scholar 

  15. Ray EM, Sanoff HK. Optimal therapy for patients with hepatocellular carcinoma and resistance or intolerance to sorafenib: challenges and solutions. J Hepatocell Carcinoma. 2017;4:131–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maeda N, Osuga K, Shimazu K, et al. In vivo evaluation of cisplatin-loaded superabsorbent polymer microspheres for use in chemoembolization of VX2 liver tumors. J Vasc Interv Radiol. 2012;23(397–404):e391.

    Google Scholar 

  17. Poggi G, Quaretti P, Minoia C, et al. Transhepatic arterial chemoembolization with oxaliplatin-eluting microspheres (OEM-TACE) for unresectable hepatic tumors. Anticancer Res. 2008;28:3835–42.

    CAS  PubMed  Google Scholar 

  18. Mohammad AK, Reineke JJ. Quantitative detection of PLGA nanoparticle degradation in tissues following intravenous administration. Mol Pharm. 2013;10:2183–9.

    Article  CAS  PubMed  Google Scholar 

  19. Deschamps F, Moine L, Isoardo T, et al. Parameters for stable water-in-oil lipiodol emulsion for liver trans-arterial chemo-embolization. Cardiovasc Intervent Radiol. 2017;40(12):1927–32.

    Article  CAS  PubMed  Google Scholar 

  20. Deschamps F, Farouil G, Gonzalez W, et al. Stabilization improves theranostic properties of lipiodol(R)-based emulsion during liver trans-arterial chemo-embolization in a VX2 rabbit model. Cardiovasc Intervent Radiol. 2017;40:907–13.

    Article  CAS  PubMed  Google Scholar 

  21. Choi JW, Cho HJ, Park JH, et al. Comparison of drug release and pharmacokinetics after transarterial chemoembolization using diverse lipiodol emulsions and drug-eluting beads. PLoS ONE. 2014;9:e115898.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boulin M, Schmitt A, Delhom E, et al. Improved stability of lipiodol-drug emulsion for transarterial chemoembolisation of hepatocellular carcinoma results in improved pharmacokinetic profile: proof of concept using idarubicin. Eur Radiol. 2016;26:601–9.

    Article  PubMed  Google Scholar 

  23. Ducreux M, Ychou M, Laplanche A, et al. Hepatic arterial oxaliplatin infusion plus intravenous chemotherapy in colorectal cancer with inoperable hepatic metastases: a trial of the gastrointestinal group of the Federation Nationale des Centres de Lutte Contre le Cancer. J Clin Oncol. 2005;23:4881–7.

    Article  CAS  PubMed  Google Scholar 

  24. Boige V, Malka D, Elias D, et al. Hepatic arterial infusion of oxaliplatin and intravenous LV5FU2 in unresectable liver metastases from colorectal cancer after systemic chemotherapy failure. Ann Surg Oncol. 2008;15:219–26.

    Article  PubMed  Google Scholar 

  25. Dzodic R, Gomez-Abuin G, Rougier P, et al. Pharmacokinetic advantage of intra-arterial hepatic oxaliplatin administration: comparative results with cisplatin using a rabbit VX2 tumor model. Anticancer Drugs. 2004;15:647–50.

    Article  CAS  PubMed  Google Scholar 

  26. de Baere T, Arai Y, Lencioni R, et al. Treatment of liver tumors with lipiodol TACE: technical recommendations from experts opinion. Cardiovasc Intervent Radiol. 2015;39:334–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Woo-Ram Park, Xiaoke Huang, Soojeong Cho, and Lionel Mercier for their previous technical support. Metal analysis was performed at the Northwestern University Quantitative Bio-element Imaging Center generously supported by NASA Ames Research Center Grant NNA04CC36G.

Funding

This study was supported by NIH funding source (R01CA181658).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Deschamps.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deschamps, F., Harris, K.R., Moine, L. et al. Pickering-Emulsion for Liver Trans-Arterial Chemo-Embolization with Oxaliplatin. Cardiovasc Intervent Radiol 41, 781–788 (2018). https://doi.org/10.1007/s00270-018-1899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-018-1899-y

Keywords

Navigation