Percutaneous Thermal Ablation with Ultrasound Guidance. Fusion Imaging Guidance to Improve Conspicuity of Liver Metastasis

  • Antoine Hakime
  • Steven Yevich
  • Lambros Tselikas
  • Frederic Deschamps
  • David Petrover
  • Thierry De Baere
Clinical Investigation



To assess whether fusion imaging-guided percutaneous microwave ablation (MWA) can improve visibility and targeting of liver metastasis that were deemed inconspicuous on ultrasound (US).

Materials and Methods

MWA of liver metastasis not judged conspicuous enough on US was performed under CT/US fusion imaging guidance. The conspicuity before and after the fusion imaging was graded on a five-point scale, and significance was assessed by Wilcoxon test. Technical success, procedure time, and procedure-related complications were evaluated.


A total of 35 patients with 40 liver metastases (mean size 1.3 ± 0.4 cm) were enrolled. Image fusion improved conspicuity sufficiently to allow fusion-targeted MWA in 33 patients. The time required for image fusion processing and tumors’ identification averaged 10 ± 2.1 min (range 5–14). Initial conspicuity on US by inclusion criteria was 1.2 ± 0.4 (range 0–2), while conspicuity after localization on fusion imaging was 3.5 ± 1 (range 1–5, p < 0.001). Technical success rate was 83% (33/40) in intention-to-treat analysis and 100% in analysis of treated tumors. There were no major procedure-related complications.


Fusion imaging broadens the scope of US-guided MWA to metastasis lacking adequate conspicuity on conventional US. Fusion imaging is an effective tool to increase the conspicuity of liver metastases that were initially deemed non visualizable on conventional US imaging.


Fusion imaging Liver metastases Thermal ablation 


Compliance with Ethical Standards

Conflicts of interest



  1. 1.
    Hotsen N, Puls R, Bechstein W, Felix R. Focal liver lesion tumors: Doppler ultrasound. Eur Radiol. 1999;9:428–35.CrossRefGoogle Scholar
  2. 2.
    Li KC, Chan F. New approaches to the investigation of focal hepatic lesion tumors. Baillieres Best Pract Res Clin Gastroenterol. 1999;13:529–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee MW, Kim YJ, Park HS, et al. Targeted sonography for small hepatocellular carcinoma discovered by CT or MRI: factors affecting sonographic detection. AJR. 2010;194:394–400Google Scholar
  4. 4.
    Di Mauro E, Solbiati M, De Beni S, Forzoni L, D’Onofrio S, Solbiati L. Virtual navigator real-time ultrasound fusion imaging with positron emission tomography for liver interventions. In: Conference proceedings of IEEE Engineering in Medicine and Biology Society, 2013, pp 1406–1409.Google Scholar
  5. 5.
    Venkatesan AM, Kadoury S, Abi-Jaoudeh N, Levy EB, Maass-Moreno R, Krücker J, Dalal S, Xu S, Glossop N, Wood BJ. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology. 2011;260(3):848–56.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Crocetti L, Lencioni R, Debeni S, See TC, Pina CD, Bartolozzi C. Targeting liver lesion for radiofrequency ablation: an experimental feasibility study using a CT-US fusion imaging system. Investig Radiol. 2008;43(1):33–9.CrossRefGoogle Scholar
  7. 7.
    Sandulescu DL, Dumitrescu D, Rogoveanu I, Saftoiu A. Hybrid ultrasound imaging techniques (fusion imaging). World J Gastroenterol. 2011;17(1):49–52.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mauri G, Cova L, De Beni S, Ierace T, Tondolo T, Cerri A, Goldberg SN, Solbiati L. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Interv Radiol. 2015;38(1):143–51.CrossRefGoogle Scholar
  9. 9.
    Wood BJ, Zhang H, Durrani A, Glossop N, Ranjan S, Lindisch D, Levy E, Banovac F, Borgert J, Krueger S, Kruecker J, Viswanathan A, Cleary K. Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol. 2005;16(4):493–505.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wood BJ, Locklin JK, Viswanathan A, Kruecker J, Haemmerich D, Cebral J, Sofer A, Cheng R, McCreedy E, Cleary K, McAuliffe MJ, Glossop N, Yanof J. Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol. 2007;18(1 Pt 1):9–24.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hirooka M, Iuchi H, Kumagi T, Shigematsu S, Hiraoka A, Uehara T, Kurose K, Horiike N, Onji M. Virtual sonographic radiofrequency ablation of hepatocellular carcinoma visualized on CT but not on conventional sonography. AJR. 2006;186(5 Suppl):S255–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Ahn SJ, Lee JM, Lee DH, Lee SM, Yoon JH, Kim YJ, Lee JH, Yu SJ, Han JK. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J Hepatol. 2016. doi:  10.1016/j.jhep.2016.09.003 Google Scholar
  13. 13.
    Minami T, Minami Y, Chishina H, Arizumi T, Takita M, Kitai S, Yada N, Inoue T, Hagiwara S, Ueshima K, Nishida N, Kudo M. Combination guidance of contrast-enhanced US and fusion imaging in radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on contrast-enhanced US/fusion imaging. Oncology. 2014;2014(87 Suppl 1):55–62.CrossRefGoogle Scholar
  14. 14.
    Liu FY, Yu XL, Liang P, Cheng ZG, Han ZY, Dong BW, Zhang XH. Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography. Eur J Radiol. 2012;81(7):1455–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Nakai M, Sato M, Sahara S, Takasaka I, Kawai N, Minamiguchi H, Tanihata H, Kimura M, Takeuchi N. Radiofrequency ablation assisted by real-time virtual sonography and CT for hepatocellular carcinoma undetectable by conventional sonography. Cardiovasc Interv Radiol. 2009;32(1):62–9.CrossRefGoogle Scholar
  16. 16.
    Lee MW, Rhim H, Cha DI, Kim YJ, Lim HK. Planning US for percutaneous radiofrequency ablation of small hepatocellular carcinomas (1–3 cm): value of fusion imaging with conventional US and CT/MR images. J Vasc Interv Radiol. 2013;24:958–65.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee MW, Rhim H, Cha DI, Kim YJ, Choi D, Kim YS, Lim HK. Percutaneous radiofrequency ablation of hepatocellular carcinoma: fusion imaging guidance for management of lesion tumors with poor conspicuity at conventional sonography. AJR. 2012;198(6):1438–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Hakime A, Deschamps F, De Carvalho EG, Teriitehau C, Auperin A, De Baere T. Clinical evaluation of spatial accuracy of a fusion imaging technique combining previously acquired computed tomography and real-time ultrasound for imaging of liver metastases. Cardiovasc Interv Radiol. 2011;34(2):338–44.CrossRefGoogle Scholar
  19. 19.
    Inyoung S, Hynchal R, Hyo KL, Young-Sun K, Dongil C. Percutaneous radiofrequency ablation of hepatocellular carcinoma abutting the diaphragm and gastrointestinal tracts with the use of artificial ascites: safety and technical efficacy in 143 patients. Eur Radiol. 2009;19:2630–40.CrossRefGoogle Scholar
  20. 20.
    Farouil G, Deschamps F, Hakime A, de Baere T. Coil-assisted RFA of poorly visible liver tumors: effectiveness and risk factors of local tumor progression. Cardiovasc Interv Radiol. 2014;37(3):716–22.Google Scholar
  21. 21.
    Wang X, Sofocleous CT, Erinjeri JP, Petre EN, Gonen M, Do KG, Brown KT, Covey AM, Brody LA, Alago W, Thornton RH, Kemeny NE, Solomon SB. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Interv Radiol. 2013;36(1):166–75.CrossRefGoogle Scholar
  22. 22.
    Goldberg SN, Grassi CJ, Cardella JF, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology. 2005;235:728–39.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sheafor D, Paulson E, Simmons C, De-Long D, Nelson R. Abdominal percutaneous interventional procedures: comparison of CT and US guidance. Radiology. 1998;207:705–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Dodd GD III, Esola CC, Mernel DS, et al. Sonography: the undiscovered jewel of interventional radiology. Radiographics. 1996;16:1271–88.CrossRefPubMedGoogle Scholar
  25. 25.
    Paulson EK, Sheafor DH, Enterline DS, McAdams HP, Yoshizumi TT. CT fluoroscopy-guided interventional procedures: techniques and radiation dose to radiologists. Radiology. 2001;220(1):161–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Cazzato RL, Buy X, Alberti N, Fonck M, Grasso RF, Palussière J. Flat-panel cone-beam CT-guided radiofrequency ablation of very small (< 1.5 cm) liver tumors: technical note on a preliminary experience. Cardiovasc Interv Radiol. 2015;38:206–12.CrossRefGoogle Scholar
  27. 27.
    Hohmann J, Albrecht T, Hoffmann CW, Wolf KJ. Ultrasonographic detection of focal liver tumors: increased sensitivity and specificity with microbubble contrast agents. Eur J Radiol. 2003;46(2):147–59.CrossRefPubMedGoogle Scholar
  28. 28.
    Rhim H, Lee MH, Kim YS, Choi D, Lee WJ, Lim HK. Planning sonography to assess the feasibility of percutaneous radiofrequency ablation of hepatocellular carcinomas. AJR. 2008;190(5):1324–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee MW, Kim YJ, Park HS, Yu NC, Jung SI, Ko SY, et al. Targeted sonography for small hepatocellular carcinoma discovered by CT or MRI: factors affecting sonographic detection. AJR. 2010;194(5):W396–400.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim PN, Choi D, Rhim H, Rha SE, Hong HP, Lee J, et al. Planning ultrasound for percutaneous radiofrequency ablation to treat small (</=3 cm) hepatocellular carcinomas detected on computed tomography or magnetic resonance imaging: a multicenter prospective study to assess factors affecting ultrasound visibility. J Vasc Interv Radiol. 2012;23(5):627–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Adam A, Hatzidakis A, Hamady M, Sabharwal T, Gangi A. Percutaneous coil placement prior to radiofrequency ablation of poorly visible hepatic tumors. Eur Radiol. 2004;14(9):1688–91.CrossRefPubMedGoogle Scholar
  32. 32.
    Van Tilborg AA, Meijerink MR, Sietses C, Van Waesberghe JH, Mackintosh MO, Meijer S, Van Kuijk C, Van Den Tol P. Long-term results of radiofrequency ablation for unresectable colorectal liver metastases: a potentially curative intervention. Br J Radiol. 2011;2011(84):556–65.CrossRefGoogle Scholar
  33. 33.
    Gillams AR, Lees WR. Five-year survival in 309 patients with colorectal liver metastases treated with radiofrequency ablation. Eur Radiol. 2009;19(5):1206–13.CrossRefPubMedGoogle Scholar
  34. 34.
    Solbiati L, Livraghi T, Goldberg SN, Ierace T, Meloni F, Dellanoce M, Cova L, Halpern EF, Gazelle GS. Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology. 2001;221(1):159P–66P.CrossRefGoogle Scholar
  35. 35.
    Solbiati L, Ahmed M, Cova L, Ierace T, Brioschi M, Goldberg SN. Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology. 2012;265(3):958–68.CrossRefPubMedGoogle Scholar
  36. 36.
    Gianfelice D, Lepanto L, Perreault P, Chartrand-Lefebvre C, Milette PC. Value of CT fluoroscopy for percutaneous biopsy procedures. J Vasc Interv Radiol. 2000;11:879–84.CrossRefPubMedGoogle Scholar
  37. 37.
    Mewly JY, Schnyder P, Gudinchet F, Denys A. Pulse-inversion harmonic imaging improves lesion tumor conspicuity during US-guided biopsy. J Vasc Interv Radiol. 2003;14:335–41.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2017

Authors and Affiliations

  1. 1.Interventional Radiology DepartmentGustave Roussy - Cancer CampusVillejuifFrance
  2. 2.Imagerie Médicale Paris Centre, IMPCParisFrance
  3. 3.University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations