Advertisement

CardioVascular and Interventional Radiology

, Volume 40, Issue 2, pp 166–176 | Cite as

Avoiding Complications in Bone and Soft Tissue Ablation

  • A. Nicholas Kurup
  • Grant D. Schmit
  • Jonathan M. Morris
  • Thomas D. Atwell
  • John J. Schmitz
  • Adam J. Weisbrod
  • David A. Woodrum
  • Patrick W. Eiken
  • Matthew R. Callstrom
Review/State of the Art

Abstract

As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitor critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.

Keywords

Ablation Cryoablation Radiofrequency ablation Musculoskeletal Bone tumors 

Notes

Compliance with ethical standards

Conflicts of interest

A. N. Kurup has received a research grant from Galil Medical; has received royalties from UpToDate, Inc.; outside the submitted work. J. M. Morrois is a paid consultant for Medtronic; outside the submitted work. M. R. Callstrom has received research grants from General Electric Medical, Thermedical, Galil Medical, and Siemens Medical; has received royalties from UpToDate, Inc.; and is a paid consultant for Covidien, Medtronic, and Perseon Medical; outside the submitted work. All other authors have no potential conflicts of interest to disclose.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Adachi A, Kaminou T, Ogawa T, et al. Heat distribution in the spinal canal during radiofrequency ablation for vertebral lesions: study in swine. Radiology. 2008;247(2):374–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahrar K, Stafford RJ. Magnetic resonance imaging-guided laser ablation of bone tumors. Tech Vasc Interv Radiol. 2011;14(3):177–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Anchala PR, Irving WD, Hillen TJ, et al. Treatment of metastatic spinal lesions with a navigational bipolar radiofrequency ablation device: a multicenter retrospective study. Pain Physician. 2014;17(4):317–27.PubMedGoogle Scholar
  4. 4.
    Beland MD, Dupuy DE, Mayo-Smith WW. Percutaneous cryoablation of symptomatic extraabdominal metastatic disease: preliminary results. AJR Am J Roentgenol. 2005;184(3):926–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Buy X, Basile A, Bierry G, Cupelli J, Gangi A. Saline-infused bipolar radiofrequency ablation of high-risk spinal and paraspinal neoplasms. AJR Am J Roentgenol. 2006;186(5 Suppl):S322–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Buy X, Tok CH, Szwarc D, Bierry G, Gangi A. Thermal protection during percutaneous thermal ablation procedures: interest of carbon dioxide dissection and temperature monitoring. Cardiovasc Intervent Radiol. 2009;32(3):529–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Callstrom MR, Atwell TD, Charboneau JW, et al. Painful metastases involving bone: percutaneous image-guided cryoablation–prospective trial interim analysis. Radiology. 2006;241(2):572–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Callstrom MR, Dupuy DE, Solomon SB, et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013;119(5):1033–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Chosy SG, Nakada SY, Lee FT Jr, Warner TF. Monitoring renal cryosurgery: predictors of tissue necrosis in swine. J Urol. 1998;159(4):1370–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Coskun DJ, Gilchrist J, Dupuy D. Lumbosacral radiculopathy following radiofrequency ablation therapy. Muscle Nerve. 2003;28(6):754–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Deschamps F, Farouil G, Hakime A, et al. Cementoplasty of metastases of the proximal femur: is it a safe palliative option? J Vasc Interv Radiol. 2012;23(10):1311–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Deschamps F, Farouil G, Hakime A, Teriitehau C, Barah A, de Baere T. Percutaneous stabilization of impending pathological fracture of the proximal femur. Cardiovasc Intervent Radiol. 2012;35(6):1428–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Diehn FE, Neeman Z, Hvizda JL, Wood BJ. Remote thermometry to avoid complications in radiofrequency ablation. J Vasc Interv Radiol. 2003;14(12):1569–76.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dupuy DE, Liu D, Hartfeil D, et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer. 2010;116(4):989–97.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Friedman MV, Hillen TJ, Wessell DE, Hildebolt CF, Jennings JW. Hip chondrolysis and femoral head osteonecrosis: a complication of periacetabular cryoablation. J Vasc Interv Radiol. 2014;25(10):1580–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Gangi A, Tsoumakidou G, Buy X, Quoix E. Quality improvement guidelines for bone tumour management. Cardiovasc Intervent Radiol. 2010;33(4):706–13.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gillams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005;28(4):476–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Glaiberman CB, Brown DB. Reversible neuropathy caused by overuse following radiofrequency ablation of metastatic pelvic lesions. J Vasc Interv Radiol. 2004;15(11):1307–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Goetz MP, Callstrom MR, Charboneau JW, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol. 2004;22(2):300–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Hidalgo JA, Reddy CG, Schmit GD, Spinner RJ. Sciatic neuropathy after extruded cement from cementoplasty. Spine J. 2012;12(6):532–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Hillen TJ, Anchala P, Friedman MV, Jennings JW. Treatment of metastatic posterior vertebral body osseous tumors by using a targeted bipolar radiofrequency ablation device: technical note. Radiology. 2014;273(1):261–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Jia J, Pollock M. The pathogenesis of non-freezing cold nerve injury. Observations in the rat. Brain. 1997;120(Pt 4):631–46.PubMedGoogle Scholar
  23. 23.
    Kashima M, Yamakado K, Takaki H, et al. Radiofrequency ablation for the treatment of bone metastases from hepatocellular carcinoma. AJR Am J Roentgenol. 2010;194(2):536–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Kelekis A, Lovblad KO, Mehdizade A, et al. Pelvic osteoplasty in osteolytic metastases: technical approach under fluoroscopic guidance and early clinical results. J Vasc Interv Radiol. 2005;16(1):81–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Kelekis A, Filippiadis D, Anselmetti G, et al. Percutaneous augmented peripheral osteoplasty in long bones of oncologic patients for pain reduction and prevention of impeding pathologic fracture: the rebar concept. Cardiovasc Intervent Radiol. 2016;39(1):90–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Kojima H, Tanigawa N, Kariya S, Komemushi A, Shomura Y, Sawada S. Clinical assessment of percutaneous radiofrequency ablation for painful metastatic bone tumors. Cardiovasc Intervent Radiol. 2006;29(6):1022–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Kurup AN, Morris JM, Schmit GD, et al. Neuroanatomic considerations in percutaneous tumor ablation. Radiographics. 2013;33(4):1195–215.PubMedCrossRefGoogle Scholar
  28. 28.
    Kurup AN, Morris JM, Boon AJ, et al. Motor evoked potential monitoring during cryoablation of musculoskeletal tumors. J Vasc Interv Radiol. 2014;25(11):1657–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Kurup AN, Morris JM, Schmit GD, et al. Balloon-assisted osteoplasty of periacetabular tumors following percutaneous cryoablation. J Vasc Interv Radiol. 2015;26(4):588–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Lane MD, Le HB, Lee S, et al. Combination radiofrequency ablation and cementoplasty for palliative treatment of painful neoplastic bone metastasis: experience with 53 treated lesions in 36 patients. Skeletal Radiol. 2011;40(1):25–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee FT Jr, Chosy SG, Littrup PJ, Warner TF, Kuhlman JE, Mahvi DM. CT-monitored percutaneous cryoablation in a pig liver model: pilot study. Radiology. 1999;211(3):687–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee J, Rhim H, Jeon YH, et al. Radiofrequency ablation of liver adjacent to body of gallbladder: histopathologic changes of gallbladder wall in a pig model. AJR Am J Roentgenol. 2008;190(2):418–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Lessard AM, Gilchrist J, Schaefer L, Dupuy DE. Palliation of recurrent Ewing sarcoma of the pelvis with cryoablation and somatosensory-evoked potentials. J Pediatr Hematol Oncol. 2009;31(1):18–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Masala S, Guglielmi G, Petrella MC, et al. Percutaneous ablative treatment of metastatic bone tumours: visual analogue scale scores in a short-term series. Singapore Med J. 2011;52(3):182–9.PubMedGoogle Scholar
  35. 35.
    Munk PL, Rashid F, Heran MK, et al. Combined cementoplasty and radiofrequency ablation in the treatment of painful neoplastic lesions of bone. J Vasc Interv Radiol. 2009;20(7):903–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Nakatsuka A, Yamakado K, Maeda M, et al. Radiofrequency ablation combined with bone cement injection for the treatment of bone malignancies. J Vasc Interv Radiol. 2004;15(7):707–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Nakatsuka A, Yamakado K, Takaki H, et al. Percutaneous radiofrequency ablation of painful spinal tumors adjacent to the spinal cord with real-time monitoring of spinal canal temperature: a prospective study. Cardiovasc Intervent Radiol. 2009;32(1):70–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Napoli A, et al. MR Imaging-guided focused ultrasound for treatment of bone metastasis. Radiographics. 2013;33(6):1555–68.PubMedCrossRefGoogle Scholar
  39. 39.
    Nour SG, Aschoff AJ, Mitchell IC, Emancipator SN, Duerk JL, Lewin JS. MR imaging-guided radio-frequency thermal ablation of the lumbar vertebrae in porcine models. Radiology. 2002;224(2):452–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Philip A, Gupta S, Ahrar K, Tam AL. A spectrum of nerve injury after thermal ablation: a report of four cases and review of the literature. Cardiovasc Intervent Radiol. 2013;36(5):1427–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Prologo JD, Passalacqua M, Patel I, Bohnert N, Corn DJ. Image-guided cryoablation for the treatment of painful musculoskeletal metastatic disease: a single-center experience. Skeletal Radiol. 2014;43(11):1551–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Prologo JD, Patel I, Buethe J. Bohnert N Ablation zones and weight-bearing bones: points of caution for the palliative interventionalist. J Vasc Interv Radiol. 2014;25(5):769–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Pusceddu C, Sotgia B, Fele RM, Melis L. Treatment of bone metastases with microwave thermal ablation. J Vasc Interv Radiol. 2013;24(2):229–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Rutkove SB. Effects of temperature on neuromuscular electrophysiology. Muscle Nerve. 2001;24(7):867–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Sabharwal T, Katsanos K, Buy X, Gangi A. Image-guided ablation therapy of bone tumors. Semin Ultrasound CT MR. 2009;30(2):78–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Saliken JC, McKinnon JG, Gray R. CT for monitoring cryotherapy. AJR Am J Roentgenol. 1996;166(4):853–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Sandomirsky M, Crifasi JA, Long C, Mitchell EK. Case report of fatal complication in prostatic cryotherapy. First reported death due to argon gas emboli. Am J Med Pathol. 2012;33(1):68–72.CrossRefGoogle Scholar
  48. 48.
    Tomasian A, Wallace A, Northrup B, Hillen TJ, Jennings JW. Spine cryoablation: pain palliation and local tumor control for vertebral metastases. AJNR Am J Neuroradiol. 2016;37(1):189–95.PubMedCrossRefGoogle Scholar
  49. 49.
    Toyota N, Naito A, Kakizawa H, et al. Radiofrequency ablation therapy combined with cementoplasty for painful bone metastases: initial experience. Cardiovasc Intervent Radiol. 2005;28(5):578–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Tsoumakidou G, Garnon J, Ramamurthy N, Buy X, Gangi A. Interest of electrostimulation of peripheral motor nerves during percutaneous thermal ablation. Cardiovasc Intervent Radiol. 2013;36(6):1624–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Tsoumakidou G, Borensztein M, Zini C, Garnon J, Gangi A. Postablation insufficiency fracture of the iliac crest: management by percutaneous screw fixation. Cardiovasc Intervent Radiol. 2014;37(4):1126–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Tuncali K, Morrison PR, Winalski CS, et al. MRI-guided percutaneous cryotherapy for soft-tissue and bone metastases: initial experience. AJR Am J Roentgenol. 2007;189(1):232–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Uri IF, Garnon J, Tsoumakidou G, Gangi A. An ice block: a novel technique of successful prevention of cement leakage using an ice ball. Cardiovasc Intervent Radiol. 2015;38(2):470–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Weill A, Kobaiter H, Chiras J. Acetabulum malignancies: technique and impact on pain of percutaneous injection of acrylic surgical cement. Eur Radiol. 1998;8(1):123–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Yamane T, Tateishi A, Cho S, et al. The effects of hyperthermia on the spinal cord. Spine. 1992;17(11):1386–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2016

Authors and Affiliations

  • A. Nicholas Kurup
    • 1
  • Grant D. Schmit
    • 1
  • Jonathan M. Morris
    • 1
  • Thomas D. Atwell
    • 1
  • John J. Schmitz
    • 1
  • Adam J. Weisbrod
    • 1
  • David A. Woodrum
    • 1
  • Patrick W. Eiken
    • 1
  • Matthew R. Callstrom
    • 1
  1. 1.Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations