Treatment of Metastatic Lymph Nodes in the Neck from Papillary Thyroid Carcinoma with Percutaneous Laser Ablation

Abstract

Purpose

To assess the effectiveness of percutaneous laser ablation (PLA) of cervical lymph node metastases from papillary thyroid carcinoma.

Materials and Methods

24 patients (62.3 ± 13.2 year; range 32–80) previously treated with thyroidectomy, neck dissection, and radioiodine ablation underwent ultrasound-guided PLA of 46 18FDG-PET/CT—positive metachronous nodal metastases. All patients were at high surgical risk or refused surgery and were unsuitable for additional radioiodine ablation. A 300 µm quartz fiber and a continuous-wave Nd-YAG laser operating at 1.064 mm were used. Technical success, rate of complications, rate of serological conversion, and local control at follow-up were derived. Fisher’s exact test and Mann–Whitney U test were used and Kaplan–Meier curve calculated.

Results

Technical success was obtained in all 46 lymph nodes (100 %). There were no major complications. Thyroglobulin levels decreased from 8.40 ± 9.25 ng/ml before treatment to 2.73 ± 4.0 ng/ml after treatment (p = 0.011), with serological conversion in 11/24 (45.8 %) patients. Overall, local control was obtained in 40/46 (86.9 %) lymph nodes over 30 ± 11 month follow-up, with no residual disease seen at imaging in 19/24 (79.1 %) patients. Local control was achieved in 40/46 (86.9 %) lymph nodes at 1 year and in all of the 25 nodes (100 %) followed for 3 years. Estimated mean time to progression was 38.6 ± 2.7 m.

Conclusion

Ultrasound-guided PLA is a feasible, safe, and effective therapy for the treatment of cervical lymph node metastases from papillary thyroid carcinoma.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    LiVolsi V. Papillary thyroid carcinoma: an update. Mod Pathol. 2011;24(Suppl 2):S1–9.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    McLeod DS. Current concepts and future directions in differentiated thyroid cancer. Clin Biochem Rev. 2010;31:9–19.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ito Y, Miyauchi A. Lateral and mediastinal lymph node dissection in differentiated thyroid carcinoma: indications, benefits, and risks. World J Surg. 2007;31:905–15.

    Article  PubMed  Google Scholar 

  4. 4.

    Wang W, Larson SM, Tuttle RM, et al. Resistance of [18f]-fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid. 2001;11:1169–75.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Lewis BD, Hay ID, Charboneau JW, et al. Percutaneous ethanol injection for treatment of cervical lymph node metastases in patients with papillary thyroid carcinoma. AJR Am J Roentgenol. 2002;178:699–704.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Dupuy DE, Monchik JM, Decrea C, Pisharodi L. Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery. 2001;130:971–7.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Pacella CM, Papini E. Image-guided percutaneous ablation therapies for local recurrences of thyroid tumors. J Endocrinol Invest. 2013;36:61–70.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kim J, Yoo WS, Park YJ, et al. Efficacy and safety of radiofrequency ablation for treatment of locally recurrent thyroid cancers smaller than 2 cm. Radiology. 2015;276:909–18.

    Article  PubMed  Google Scholar 

  9. 9.

    Pacella CM, Francica G, Di Lascio FML, et al. Long-term outcome of cirrhotic patients with early hepatocellular carcinoma treated with ultrasound-guided percutaneous laser ablation: a retrospective analysis. J Clin Oncol. 2009;27:2615–21.

    Article  PubMed  Google Scholar 

  10. 10.

    Valcavi R, Riganti F, Bertani A, et al. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid. 2010;20:1253–61.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Barbaro D, Orsini P, Lapi P, et al. Percutaneous laser ablation in the treatment of toxic and pretoxic nodular goiter. Endocr Pract. 2007;13:30–6.

    Article  PubMed  Google Scholar 

  12. 12.

    Pacella CM, Mauri G, Achille G, et al. Outcomes and risk factors for complications of laser ablation for thyroid nodules: a multicenter study on 1531 patients. J Clin Endocrinol Metab. 2015;100:3903–10.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Papini E, Bizzarri G, Bianchini A, et al. Percutaneous ultrasound-guided laser ablation is effective for treating selected nodal metastases in papillary thyroid cancer. J Clin Endocrinol Metab. 2013;98:E92–7.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Mauri G, Cova L, Tondolo T, et al. Percutaneous laser ablation of metastatic lymph nodes in the neck from papillary thyroid carcinoma: preliminary results. J Clin Endocrinol Metab 2013;98(7):E1203–7.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Mauri G, Porazzi E, Cova L, et al. Intraprocedural contrast-enhanced ultrasound (CEUS) in liver percutaneous radiofrequency ablation: clinical impact and health technology assessment. Insights Imaging. 2014;5:209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Sacks D, McClenny TE, Cardella JF, Lewis CA. Society of Interventional Radiology clinical practice guidelines. J Vasc Interv Radiol. 2003;14:S199–202.

    Article  PubMed  Google Scholar 

  17. 17.

    Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. J Endocrinol Invest. 2010;33:1–50.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Caglar M, Bozkurt FM, Akca CK, et al. Comparison of 800 and 3700 MBq iodine-131 for the postoperative ablation of thyroid remnant in patients with low-risk differentiated thyroid cancer. Nucl Med Commun. 2012;33:268–74.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Fallahi B, Beiki D, Takavar A, et al. Low versus high radioiodine dose in postoperative ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma: a large randomized clinical trial. Nucl Med Commun. 2012;33:275–82.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ito Y, Uruno T, Takamura Y, et al. Papillary microcarcinomas of the thyroid with preoperatively detectable lymph node metastasis show significantly higher aggressive characteristics on immunohistochemical examination. Oncology. 2005;68:87–96.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Schlumberger MJ. Papillary follicular thyroid carcinoma. N Engl J Med. 1998;338:297–306.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Johnson NA, Tublin ME. Postoperative surveillance of differentiated thyroid carcinoma: rationale, techniques, and controversies. Radiology. 2008;249:429–44.

    Article  PubMed  Google Scholar 

  24. 24.

    Bannas P, Derlin T, Groth M, et al. Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann Nucl Med. 2012;26:77–85.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Choi M-Y, Chung J-K, Lee H-Y, et al. The clinical impact of 18F-FDG PET in papillary thyroid carcinoma with a negative 131I whole body scan: a single-center study of 108 patients. Ann Nucl Med. 2006;20:547–52.

    Article  PubMed  Google Scholar 

  26. 26.

    Rivera M, Ghossein RA, Schoder H, et al. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer. 2008;113:48–56.

    Article  PubMed  Google Scholar 

  27. 27.

    Shyn PB, Tatli S, Sahni VA, et al. PET/CT-guided percutaneous liver mass biopsies and ablations: targeting accuracy of a single 20 s breath-hold PET acquisition. Clin Radiol. 2014;69:410–5.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Bapst B, Lagadec M, Breguet R, et al. Cone beam computed tomography (CBCT) in the field of interventional oncology of the liver. Cardiovasc Intervent Radiol. 2015;. doi:10.1007/s00270-015-1180-6.

    Google Scholar 

  29. 29.

    Mauri G, Cova L, De Beni S, et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol. 2014;38:143–51.

    Article  PubMed  Google Scholar 

  30. 30.

    Gillams A, Goldberg N, Ahmed M, et al. Thermal ablation of colorectal liver metastases: a position paper by an international panel of ablation experts, the interventional oncology sans frontières meeting 2013. Eur Radiol. 2015;25:3438–54.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bruix J, Han K-H, Gores G, et al. Liver cancer: approaching a personalized care. J Hepatol. 2015;62:S144–56.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wong K-P, Lang BHH. The role of prophylactic central neck dissection in differentiated thyroid carcinoma: issues and controversies. J Oncol. 2011;2011:127929.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Moo TAS, Fahey TJ. Lymph node dissection in papillary thyroid carcinoma. Semin Nucl. 2011;41:84–8.

    Article  Google Scholar 

  34. 34.

    Livraghi T, Solbiati L, Meloni F, et al. Percutaneous radiofrequency ablation of liver metastases in potential candidates for resection: the “test-of-time approach”. Cancer. 2003;97:3027–35.

    Article  PubMed  Google Scholar 

  35. 35.

    Livraghi T, Paracchi A, Ferrari C, et al. Treatment of autonomous thyroid nodules with percutaneous ethanol injection: 4-year experience. Radiology. 1994;190:529–33.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Liu F-Y, Yu X-L, Liang P, et al. Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography. Eur J Radiol. 2012;81:1455–9.

    Article  PubMed  Google Scholar 

  37. 37.

    Shyn PB, Mauri G, Alencar RO, et al. Percutaneous imaging-guided cryoablation of liver tumors: predicting local progression on 24-hour MRI. AJR Am J Roentgenol. 2014;203:1–11.

    Article  Google Scholar 

  38. 38.

    Solbiati L, Giangrande A, De Pra L, et al. Percutaneous ethanol injection of parathyroid tumors under US guidance: treatment for secondary hyperparathyroidism. Radiology. 1985;155:607–10.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Monchik JM, Donatini G, Iannuccilli J, Dupuy DE. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg. 2006;244:296–304.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Heilo A, Sigstad E, Fagerlid KH, et al. Efficacy of ultrasound-guided percutaneous ethanol injection treatment in patients with a limited number of metastatic cervical lymph nodes from papillary thyroid carcinoma. J Clin Endocrinol Metab. 2011;96:2750–5.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Lim CY, Yun J-S, Lee J, et al. Percutaneous ethanol injection therapy for locally recurrent papillary thyroid carcinoma. Thyroid. 2007;17:347–50.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Livraghi T, Goldberg SN, Lazzaroni S, et al. Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology. 1999;210:655–61. doi:10.1148/radiology.210.3.r99fe40655.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Shin JE, Baek JH, Lee JH. Radiofrequency and ethanol ablation for the treatment of recurrent thyroid cancers: current status and challenges. Curr Opin Oncol. 2013;25:14–9.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Mauri G, Solbiati L. Virtual navigation and fusion imaging in percutaneous ablations in the neck. Ultrasound Med Biol. 2015;41(3):898.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mauri.

Ethics declarations

Conflict of interest

Shraga Nahum Goldberg sponsored research Cosman Company, Research consultant Cosman Company, Angiodynamics, and XACT medical. Giovanni Mauri is a consultant for Esaote S.p.A. All the other authors have nothing to disclose.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mauri, G., Cova, L., Ierace, T. et al. Treatment of Metastatic Lymph Nodes in the Neck from Papillary Thyroid Carcinoma with Percutaneous Laser Ablation. Cardiovasc Intervent Radiol 39, 1023–1030 (2016). https://doi.org/10.1007/s00270-016-1313-6

Download citation

Keywords

  • Laser
  • Percutaneous ablation
  • Thyroid neoplasm
  • Neoplasm metastasis
  • Positron emission tomography