Skip to main content

Advertisement

Log in

Image-Guided Cryoablation of the Spine in a Swine Model: Clinical, Radiological, and Pathological Findings with Light and Electron Microscopy

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to present the feasibility of an in vivo image-guided percutaneous cryoablation of the porcine vertebral body.

Methods

The institutional animal care committee approved this study. Cone-beam computed tomography (CBCT)-guided vertebral cryoablations (n = 22) were performed in eight pigs with short, 2-min, single or double-freezing protocols. Protective measures to nerves included dioxide carbon (CO2) epidural injections and spinal canal temperature monitoring. Clinical, radiological, and pathological data with light (n = 20) or transmission electron (n = 2) microscopic analyses were evaluated after 6 days of clinical follow-up and euthanasia.

Results

CBCT/fluoroscopic-guided transpedicular vertebral body cryoprobe positioning and CO2 epidural injection were successful in all procedures. No major complications were observed in seven animals (87.5 %, n = 8). A minor complication was observed in one pig (12.5 %, n = 1). Logistic regression model analysis showed the cryoprobe-spinal canal (Cp-Sc) distance as the most efficient parameter to categorize spinal canal temperatures lower than 19 °C (p < 0.004), with a significant Pearson’s correlation test (p < 0.041) between the Cp-Sc distance and the lowest spinal canal temperatures. Ablation zones encompassed pedicles and the posterior wall of the vertebral bodies with an inflammatory rim, although no inflammatory infiltrate was depicted in the surrounding neural structures at light microscopy. Ultrastructural analyses evidenced myelin sheath disruption in some large nerve fibers, although neurological deficits were not observed.

Conclusions

CBCT-guided vertebral cryoablation of the porcine spine is feasible under a combination of a short freezing protocol and protective measures to the surrounding nerves. Ultrastructural analyses may be helpful assess the early modifications of the nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Callstrom MR, Atwell TD, Charboneau JW, Farrell MA, Goetz MP, Rubin J et al (2006) Painful metastases involving bone: percutaneous image-guided cryoablation—prospective trial interim analysis. Radiology 241:572–580

    Article  PubMed  Google Scholar 

  2. Tuncali K, Morrison PR, Winalski CS, Carrino JA, Shankar S, Ready J et al (2007) MRI-guided percutaneous cryotherapy for soft-tissue and bone metastases: initial experience. AJR Am J Roentgenol 189:232–239

    Article  PubMed  Google Scholar 

  3. Buy X, Tok CH, Szwarc D, Bierry G, Gangi A (2009) Thermal protection during percutaneous thermal ablation procedures: interest of carbon dioxide dissection and temperature monitoring. Cardiovasc Intervent Radiol 32:529–534

    Article  PubMed  Google Scholar 

  4. Thacker PG, Callstrom MR, Curry TB, Mandrekar JN, Atwell TD, Goetz MP et al (2011) Palliation of painful metastatic disease involving bone with imaging-guided treatment: comparison of patients’ immediate response to radiofrequency ablation and cryoablation. AJR Am J Roentgenol 197:510–515

    Article  PubMed  Google Scholar 

  5. Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup P, Davis KW et al (2013) Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer 119:1033–1041

    Article  PubMed  Google Scholar 

  6. Buy X, Basile A, Bierry G, Cupelli J, Gangi A (2006) Saline-infused bipolar radiofrequency ablation of high-risk spinal and paraspinal neoplasms. AJR Am J Roentgenol 186:S322–S326

    Article  PubMed  Google Scholar 

  7. Philip A, Gupta S, Ahrar K, Tam AL (2013) A spectrum of nerve injury after thermal ablation: a report of four cases and review of the literature. Cardiovasc Intervent Radiol 36:1427–1435

    Article  PubMed  Google Scholar 

  8. Sabharwal T, Salter R, Adam A, Gangi A (2006) Image-guided therapies in orthopaedic oncology. Orthop Clin North Am 37:105–112

    Article  PubMed  Google Scholar 

  9. de Freitas RM, de Menezes MR, Cerri GG, Gangi A (2011) Sclerotic vertebral metastases: pain palliation using percutaneous image-guided cryoablation. Cardiovasc Intervent Radiol 34:S294–S299

    Article  PubMed  Google Scholar 

  10. Tatsunani K, Rubinsky B, Onik G, Dahiya R (1996) Effect of thermal variables on frozen human primary prostatic adenocarcinoma cells. Urology 48:441–447

    Article  Google Scholar 

  11. Campbell SC, Krishnamurthi V, Chow G, Hale J, Myles J, Novick AC (1998) Renal cryosurgery: experimental evaluation of treatment parameters. Urology 52:29–34

    Article  CAS  PubMed  Google Scholar 

  12. Baust JG, Gage AA, Bjerklund Johansen TE, Baust JM (2014) Mechanisms of cryoablation: clinical consequences on malignant tumors. Cryobiology 68:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dupuy DE, Hong R, Oliver B, Goldberg N (2000) Radiofrequency ablation of spinal tumors: temperature distribution in the spinal canal. AJR Am J Roentgenol 175:1263–1266

    Article  CAS  PubMed  Google Scholar 

  14. Nour SG, Aschoff AJ, Mitchell ICS, Emancipator SN, Duerk JL, Lewin JS (2002) MR imaging-guided radio-frequency thermal ablation of the lumbar vertebrae in porcine models. Radiology 224:452–462

    Article  PubMed  Google Scholar 

  15. Adachi A, Kaminou T, Ogawa T, Kawai T, Takaki Y, Sugiura K et al (2008) Heat distribution in the spinal canal during radiofrequency ablation of vertebral lesions: study in swine. Radiology 247:374–380

    Article  PubMed  Google Scholar 

  16. Pezeshki PS, Woo J, Akens MK, Davies JE, Gofeld M, Whyne CM et al (2014) Evaluation of a bipolar-cooled radiofrequency device for ablation of bone metastases: preclinical assessment in porcine vertebrae. Spine J 14:361–370

    Article  PubMed  Google Scholar 

  17. Gage AA, Baust JM, Baust JG (2009) Experimental cryosurgery investigations in vivo. Cryobiology 59:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sunderland S (1968) Causative agents. In: Sunderland S (ed) Nerves and nerve injuries. E & S Livingstone, Edinburgh & London, pp 140–179

    Google Scholar 

  19. Burnett MG, Zager EL (2004) Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16:1–7

    Article  Google Scholar 

  20. Perpongkosol S, Nicol TL, Link RE, Varkarakis I, Khurana H, Zhai QJ et al (2007) Differences in ablation size in porcine kidney, liver, and lung after cryoablation using the same ablation protocol. AJR Am J Roentgenol 188:1028–1032

    Article  Google Scholar 

  21. Damy SB, Camargo RS, Chammas R, Poli-de-Figueiredo LF (2010) The fundamentals of experiments with animals—applications in experimental surgery. Rev Assoc Med Bras 56:103–111

    Article  PubMed  Google Scholar 

  22. Lee SM, Park CM, Lee KH, Bahn YE, Kim JI, Goo JM (2014) Percutaneous transthoracic needle biopsy of lung nodules: clinical experience in 1108 patients. Radiology 271:291–300

    Article  PubMed  Google Scholar 

  23. Tselikas L, Joskin J, Roquet F, Farouill G, Dreuil S, Hakimé A et al (2014) Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc Intervent Radiol Epub Mar 14

  24. Wallace MJ, Kuo MD, Glaiberman C, Binkert CA, Orth RC, Soulez G (2008) Three-dimensional c-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol 19:799–813

    Article  PubMed  Google Scholar 

  25. Pedicelli A, Verdolotti T, Pompucci A, Desiderio F, D’Argento F, Colosimo C et al (2011) Interventional spinal procedures guided and controlled by a 3D rotational angiographic unit. Skeletal Radiol 40:1595–1601

    Article  PubMed  Google Scholar 

  26. Gangi A, Dietemann JL, Mortazavi R, Pfleger D, Kauff C, Roy C (1998) CT-guided interventional procedures for pain management in the lumbosacral spine. Radiographics 18:621–633

    Article  CAS  PubMed  Google Scholar 

  27. Littrup PJ, Jallad B, Vorugu V, Littrup G, Currier B, George M et al (2009) Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size and number. J Vasc Interv Radiol 20:1343–1351

    Article  PubMed  PubMed Central  Google Scholar 

  28. Birkenmaier C, Terzis A, Wegener B, Melcher C, Fottner A, Hausdorf J et al (2010) The gel box—a testing device for the characterization of cryo- and radiofrequency lesions employed in interventional pain therapy. Pain Physician 13:263–271

    PubMed  Google Scholar 

  29. Hinshaw JL, Littrup PJ, Durick N, Leung W, Lee FT Jr, Sampson L et al (2010) Optimizing the protocol for pulmonary cryoablation: a comparison of a dual- and triple-freeze protocol. Cardiovasc Intervent Radiol 33:1180–1185

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hinshaw JL, Lee FT Jr, Laeseke PF, Sampson LA, Brace C (2010) Temperature isotherms during pulmonary cryoablation and their correlation with zone of ablation. J Vasc Interv Radiol 21:1424–1428

    Article  PubMed  PubMed Central  Google Scholar 

  31. Saliken JC, Cohen J, Miller R, Rothert M (1995) Laboratory evaluation of ice formation around a 3-mm Accuprobe. Cryobiology 32:285–295

    Article  Google Scholar 

  32. Shaw DR, Kessel DO (2006) The current status of the use of carbon dioxide in diagnostic and interventional angiographic procedures. Cardiovasc Intervent Radiol 29:323–331

    Article  PubMed  Google Scholar 

  33. Lee IH, Yoon YC, Cho EY, Kwon JW, Kwon ST (2008) Perineural air injection as a means of prevention of thermal injury of the sciatic nerve during radiofrequency ablation—a preliminary experimental study in rabbits. J Ultrasound Med 27:1221–1227

    PubMed  Google Scholar 

  34. Dath R, Ebinesan AD, Porter KM, Miles AW (2007) Anatomical measurements of porcine lumbar vertebrae. Clin Biomech 22:607–613

    Article  CAS  Google Scholar 

  35. Pereira PL, Trübenbach J, Schenk M, Subke J, Kroeber S, Schaefer I et al (2004) Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology 232:482–490

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors Ricardo M. C. de Freitas, José Guilherme M. P. Caldas, and Celi S. Andrade declare governmental support Grants from Sao Paulo Research Foundation—FAPESP: Grant 2011/51222-8 (R. M. C. F. and J. G. M. P. C), and scholarship 2012/00398-1 (C. S. A.). Miriam H. Tsunemi, Lorraine B. Ferreira, Victor E. Arana-Chavez, Patrícia M. Cury declare no conflicts of interest related to this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Miguel Costa de Freitas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, R.M.C., Andrade, C.S., Caldas, J.G.M.P. et al. Image-Guided Cryoablation of the Spine in a Swine Model: Clinical, Radiological, and Pathological Findings with Light and Electron Microscopy. Cardiovasc Intervent Radiol 38, 1261–1270 (2015). https://doi.org/10.1007/s00270-014-1043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-014-1043-6

Keywords

Navigation