Skip to main content
Log in

Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the detectability of intrahepatic cholangiocarcinoma (ICC) on dual-phase cone-beam CT (DPCBCT) during conventional transarterial chemoembolization (cTACE) compared to that of digital subtraction angiography (DSA) with respect to pre-procedure contrast-enhanced magnetic resonance imaging (CE-MRI) of the liver.

Methods

This retrospective study included 17 consecutive patients (10 male, mean age 64) with ICC who underwent pre-procedure CE-MRI of the liver, and DSA and DPCBCT (early-arterial phase (EAP) and delayed-arterial phase (DAP)) just before cTACE. The visibility of each ICC lesion was graded by two radiologists on a three-rank scale (complete, partial, and none) on DPCBCT and DSA images, and then compared to pre-procedure CE-MRI.

Results

Of 61 ICC lesions, only 45.9 % were depicted by DSA, whereas EAP- and DAP-CBCT yielded a significantly higher detectability rate of 73.8 % and 93.4 %, respectively (p < 0.01). Out of the 33 lesions missed on DSA, 18 (54.5 %) and 30 (90.9 %) were revealed on EAP- and DAP-CBCT images, respectively. DSA depicted only one lesion that was missed by DPCBCT due to streak artifacts caused by a prosthetic mitral valve. DAP-CBCT identified significantly more lesions than EAP-CBCT (p < 0.01). Conversely, EAP-CBCT did not detect lesions missed by DAP-CBCT. For complete lesion visibility, DAP-CBCT yielded significantly higher detectability (78.7 %) compared to EAP (31.1 %) and DSA (21.3 %) (p < 0.01).

Conclusion

DPCBCT, and especially the DAP-CBCT, significantly improved the detectability of ICC lesions during cTACE compared to DSA. We recommend the routine use of DAP-CBCT in patients with ICC for per-procedure detectability and treatment planning in the setting of TACE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khan SA, Toledano MB, Taylor-Robinson SD (2008) Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB 10(2):77–82. doi:10.1080/13651820801992641 PMID: 18773060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Njei B (2013) The changing pattern of epidemiology in intrahepatic cholangiocarcinoma. Hepatology. doi:10.1002/hep.26958 PMID: 24327308

    Google Scholar 

  3. Tan JC, Coburn NG, Baxter NN, Kiss A, Law CH (2008) Surgical management of intrahepatic cholangiocarcinoma–a population-based study. Ann Surg Oncol 15(2):600–608. doi:10.1245/s10434-007-9627-x PMID: 17987347

    Article  PubMed  Google Scholar 

  4. Scheuermann U, Kaths JM, Heise M, Pitton MB, Weinmann A, Hoppe-Lotichius M et al (2013) Comparison of resection and transarterial chemoembolisation in the treatment of advanced intrahepatic cholangiocarcinoma–a single-center experience. Eur j surg oncol 39(6):593–600. doi:10.1016/j.ejso.2013.03.010 PMID: 23611755

    Article  CAS  PubMed  Google Scholar 

  5. Hyder O, Marsh JW, Salem R, Petre EN, Kalva S, Liapi E et al (2013) Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol 20(12):3779–3786. doi:10.1245/s10434-013-3127-y PMID: 23846786

    Article  PubMed  Google Scholar 

  6. Puhalla H, Schuell B, Pokorny H, Kornek GV, Scheithauer W, Gruenberger T (2005) Treatment and outcome of intrahepatic cholangiocellular carcinoma. Am J Surg 189(2):173–177. doi:10.1016/j.amjsurg.2004.11.009 PMID: 15720985

    Article  PubMed  Google Scholar 

  7. Sainani NI, Catalano OA, Holalkere NS, Zhu AX, Hahn PF, Sahani DV (2008) Cholangiocarcinoma: current and novel imaging techniques. Radiographics. 28(5):1263–1287. doi:10.1148/rg.285075183 PMID: 18794305

    Article  PubMed  Google Scholar 

  8. Jeong HT, Kim MJ, Chung YE, Choi JY, Park YN, Kim KW (2013) Gadoxetate disodium-enhanced MRI of mass-forming intrahepatic cholangiocarcinomas: imaging-histologic correlation. AJR Am J Roentgenol 201(4):W603–W611. doi:10.2214/AJR.12.10262 PMID: 24059399

    Article  PubMed  Google Scholar 

  9. Wallace MJ, Murthy R, Kamat PP, Moore T, Rao SH, Ensor J et al (2007) Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol. 18(12):1500–1507. doi:10.1016/j.jvir.2007.07.021 PMID: 18057284

    Article  PubMed  Google Scholar 

  10. Tognolini A, Louie JD, Hwang GL, Hofmann LV, Sze DY, Kothary N (2010) Utility of C-arm CT in patients with hepatocellular carcinoma undergoing transhepatic arterial chemoembolization. J Vasc Interv Radiol. 21(3):339–347. doi:10.1016/j.jvir.2009.11.007 PMID: 20133156

    Article  PubMed  Google Scholar 

  11. Hirota S, Nakao N, Yamamoto S, Kobayashi K, Maeda H, Ishikura R et al (2006) Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Intervent Radiol 29(6):1034–1038. doi:10.1007/s00270-005-0287-6 PMID: 16988877

    Article  PubMed  Google Scholar 

  12. Wallace MJ, Kuo MD, Glaiberman C, Binkert CA, Orth RC, Soulez G et al (2008) Three-dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol 19(6):799–813. doi:10.1016/j.jvir.2008.02.018 PMID: 18503893

    Article  PubMed  Google Scholar 

  13. Kakeda S, Korogi Y, Ohnari N, Moriya J, Oda N, Nishino K et al (2007) Usefulness of cone-beam volume CT with flat panel detectors in conjunction with catheter angiography for transcatheter arterial embolization. J Vasc Interv Radiol 18(12):1508–1516. doi:10.1016/j.jvir.2007.08.003 PMID: 18057285

    Article  PubMed  Google Scholar 

  14. Meyer BC, Frericks BB, Voges M, Borchert M, Martus P, Justiz J et al (2008) Visualization of hypervascular liver lesions During TACE: comparison of angiographic C-arm CT and MDCT. AJR Am J Roentgenol 190(4):W263–W269. doi:10.2214/AJR.07.2695 PMID: 18356419

    Article  PubMed  Google Scholar 

  15. Wallace MJ (2007) C-arm computed tomography for guiding hepatic vascular interventions. Techniques in vascular and interventional radiology. 10(1):79–86. doi:10.1053/j.tvir.2007.08.002 PMID: 17980322

    Article  PubMed  Google Scholar 

  16. Miyayama A, Yamashiro S, Okuda M, Yoshie Y, Sugimori N, Igarashi S (2009) Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography 32(2):255–264. doi:10.1007/s00270-008-9468-4

    Article  PubMed  Google Scholar 

  17. Miyayama S, Yamashiro M, Hattori Y, Orito N, Matsui K, Tsuji K et al (2011) Efficacy of cone-beam computed tomography during transcatheter arterial chemoembolization for hepatocellular carcinoma. Japan J Radiol. 29(6):371–377. doi:10.1007/s11604-011-0568-8 PMID: 21786092

    Article  Google Scholar 

  18. Miyayama S, Yamashiro M, Okuda M, Yoshie Y, Nakashima Y, Ikeno H et al (2011) Detection of corona enhancement of hypervascular hepatocellular carcinoma by C-arm dual-phase cone-beam CT during hepatic arteriography. Cardiovasc Intervent Radiol 34(1):81–86. doi:10.1007/s00270-010-9835-9 PMID: 20333382

    Article  PubMed  Google Scholar 

  19. Loffroy R, Lin M, Rao P, Bhagat N, Noordhoek N, Radaelli A et al (2012) Comparing the detectability of hepatocellular carcinoma by C-arm dual-phase cone-beam computed tomography during hepatic arteriography with conventional contrast-enhanced magnetic resonance imaging. Cardiovasc Intervent Radiol. 35(1):97–104. doi:10.1007/s00270-011-0118-x PMID: 21328023

    Article  PubMed  Google Scholar 

  20. Liapi E, Geschwind JF (2011) Transcatheter arterial chemoembolization for liver cancer: is it time to distinguish conventional from drug-eluting chemoembolization? Cardiovasc Intervent Radiol. 34(1):37–49. doi:10.1007/s00270-010-0012-y PMID: 21069333

    Article  PubMed Central  PubMed  Google Scholar 

  21. Feldkamp L, Davis L, Kress J (1984) Practical cone-beam algorithms. J Opt Soc Am A: 6:612–619

    Article  Google Scholar 

  22. Lin M, Loffroy R, Noordhoek N, Taguchi K, Radaelli A, Blijd J et al (2011) Evaluating tumors in transcatheter arterial chemoembolization (TACE) using dual-phase cone-beam CT. Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy. 20(5):276–281. doi:10.3109/13645706.2010.536243 PMID: 21082901

    Article  Google Scholar 

  23. Tacher V, Radaelli A, Lin M, Geschwind J (2015) How I do it: Cone Beam Computer Tomography during Transarterial Chemoembolization for Liver Cancer. Radiology (in press)

  24. Miyayama S, Matsui O, Yamashiro M, Ryu Y, Takata H, Takeda T et al (2009) Detection of hepatocellular carcinoma by CT during arterial portography using a cone-beam CT technology: comparison with conventional CTAP. Abdom Imaging 34(4):502–506. doi:10.1007/s00261-007-9254-9 PMID: 18373115

    Article  PubMed  Google Scholar 

  25. Tacher V, Lin M, Bhagat N, Abi Jaoudeh N, Radaelli A, Noordhoek N et al (2013) Dual-phase cone-beam computed tomography to see, reach, and treat hepatocellular carcinoma during drug-eluting beads transarterial chemo-embolization. J vis exp 82:50795. doi:10.3791/50795 PMID: 24326874

    PubMed  Google Scholar 

  26. Miyayama S, Yamashiro M, Hashimoto M, Hashimoto N, Ikuno M, Okumura K et al (2013) Identification of small hepatocellular carcinoma and tumor-feeding branches with cone-beam CT guidance technology during transcatheter arterial chemoembolization. J Vasc Interv Radiol 24(4):501–508. doi:10.1016/j.jvir.2012.12.022 PMID: 23452552

    Article  PubMed  Google Scholar 

  27. Loffroy R, Lin M, Yenokyan G, Rao PP, Bhagat N, Noordhoek N et al (2013) Intraprocedural C-arm dual-phase cone-beam CT: can it be used to predict short-term response to TACE with drug-eluting beads in patients with hepatocellular carcinoma? Radiology 266(2):636–648. doi:10.1148/radiol.12112316 PMID: 23143027

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by the Max Kade Foundation, Inc., NY, USA, NIH/NCI R01 CA160771, P30 CA006973, Philips Research North America, Briarcliff Manor, NY, USA.

Conflict of interest

Ruediger E. Schernthaner: Grant Support: Max Kade Foundation, Inc., NY, USA. MingDe Lin: Grant Support: NIH; employee: Philips Research North America, Briarcliff Manor, NY, USA. Jean-François Geschwind: Consultant: Nordion, Biocompatibles/BTG, Bayer HealthCare; Grant Support: NIH, Philips Medical, DOB, Biocompatibles/BTG, Bayer HealthCare, Nordion, Context Vision, SIR, RSNA, Guerbet; Founder and CEO PreScience Labs, LLC. Rafael Duran, Julius Chapiro, and Zhijun Wang have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Geschwind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schernthaner, R.E., Lin, M., Duran, R. et al. Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization. Cardiovasc Intervent Radiol 38, 929–936 (2015). https://doi.org/10.1007/s00270-014-1026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-014-1026-7

Keywords

Navigation