Skip to main content
Log in

Planning Irreversible Electroporation in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Numerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model.

Methods

The ablation size and shape for six different IRE parameter sets (70–90 pulses, 2,000–2,700 V, 70–100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathology was analyzed from postablation day 1.

Results

Ablation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery.

Conclusion

Both numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Georgiades CS, Hong K, Bizzell C et al (2008) Safety and efficacy of CT-guided percutaneous cryoablation for renal cell carcinoma. J Vasc Interv Radiol 19:1302–1310

    Article  PubMed  Google Scholar 

  2. Zagoria RJ, Traver MA, Werle DM et al (2007) Oncologic efficacy of CT-guided percutaneous radiofrequency ablation of renal cell carcinomas. AJR Am J Roentgenol 189:429–436

    Article  PubMed  Google Scholar 

  3. Schmit GD, Thompson RH, Kurup AN et al (2012) Percutaneous cryoablation of solitary sporadic renal cell carcinomas. BJU Int 110:526–531

    Article  Google Scholar 

  4. Hui GC, Tuncali K, Tatli S et al (2008) Comparison of percutaneous and surgical approaches to renal tumor ablation: metaanalysis of effectiveness and complication rates. J Vasc Interv Radiol 19:1311–1320

    Article  PubMed  Google Scholar 

  5. Gervais DA, McGovern FJ, Arellano RS et al (2005) Radiofrequency ablation of renal cell carcinoma: part 1. Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol 185:64–71

    Article  PubMed  Google Scholar 

  6. Gervais DA, Arellano RS, McGovern FJ et al (2005) Radiofrequency ablation of renal cell carcinoma: part 2. Lessons learned with ablation of 100 tumors. AJR Am J Roentgenol 185:72–80

    Article  PubMed  Google Scholar 

  7. Igor Pinkhasov G, Raman JD (2010) Management and prevention of renal ablative therapy complications. World J Urol 28:559–564

    Article  CAS  PubMed  Google Scholar 

  8. Crow P, Keeley FX (2010) Prevention and handling of complications of renal focal therapies. J Endourol 24:765–767

    Article  PubMed  Google Scholar 

  9. Rubinsky B (2007) Irreversible electroporation in medicine. Technol Cancer Res Treat 6:255–260

    Article  PubMed  Google Scholar 

  10. Lee RC (2005) Cell injury by electric forces. Ann N Y Acad Sci 1066:85–91

    Article  CAS  PubMed  Google Scholar 

  11. Al-Sakere B, Andre F, Bernat C et al (2007) Tumor ablation with irreversible electroporation. PLoS ONE 2:e1135

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wendler JJ, Pech M, Porsch M et al (2012) Urinary tract effects after multifocal nonthermal irreversible electroporation of the kidney: acute and chronic monitoring by magnetic resonance imaging, intravenous urography and urinary cytology. Cardiovasc Intervent Radiol 35:921–926

    Article  PubMed  Google Scholar 

  13. Deodhar A, Monette S, Single GW Jr et al (2011) Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 77:754–760

    Article  PubMed  Google Scholar 

  14. Wendler JJ, Pech M, Blaschke S et al (2012) Angiography in the isolated perfused kidney: radiological evaluation of vascular protection in tissue ablation by nonthermal irreversible electroporation. Cardiovasc Intervent Radiol 35:383–390

    Article  PubMed  Google Scholar 

  15. Wendler JJ, Porsch M, Huhne S et al (2013) Short- and mid-term effects of irreversible electroporation on normal renal tissue: an animal model. Cardiovasc Intervent Radiol 36:512–520

    Article  CAS  PubMed  Google Scholar 

  16. Olweny EO, Kapur P, Tan YK et al (2013) Irreversible electroporation: evaluation of nonthermal and thermal ablative capabilities in the porcine kidney. Urology 81:679–684

    Article  PubMed  Google Scholar 

  17. Pech M, Janitzky A, Wendler JJ et al (2011) Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol 34:132–138

    Article  PubMed  Google Scholar 

  18. Edd JF, Davalos RV (2007) Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat 6:275–286

    Article  PubMed  Google Scholar 

  19. Neal RE 2nd, Garcia PA, Robertson JL et al (2012) Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans Biomed Eng 59:1076–1085

    Article  PubMed  Google Scholar 

  20. Golberg A, Rubinsky B (2010) A statistical model for multidimensional irreversible electroporation cell death in tissue. Biomed Eng Online 9:13

    Article  PubMed Central  PubMed  Google Scholar 

  21. Davalos RV, Mir IL, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231

    Article  CAS  PubMed  Google Scholar 

  22. Daniels C, Rubinsky B (2009) Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues. J Biomech Eng 131:071006

    Article  PubMed  Google Scholar 

  23. Schmidt CR, Shires P, Mootoo M (2012) Real-time ultrasound imaging of irreversible electroporation in a porcine liver model adequately characterizes the zone of cellular necrosis. HPB (Oxford) 14:98–102

    Article  Google Scholar 

  24. Thomson KR, Cheung W, Ellis SJ et al (2011) Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol 22:611–621

    Article  PubMed  Google Scholar 

  25. Kim HB, Sung CK, Baik KY et al (2013) Changes of apoptosis in tumor tissues with time after irreversible electroporation. Biochem Biophys Res Commun 435:651–656

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Xu K, Li W et al (2012) Immunologic response to tumor ablation with irreversible electroporation. PLoS ONE 7:e48749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Faroja M, Ahmed M, Appelbaum L et al (2013) Irreversible electroporation ablation: is all the damage nonthermal? Radiology 266:462–470

    Article  PubMed  Google Scholar 

  28. Kingham TP, Karkar AM, D’Angelica MI et al (2012) Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J Am Coll Surg 215:379–387

    Article  PubMed  Google Scholar 

  29. Ben-David E, Ahmed M, Faroja M et al (2013) Irreversible electroporation: treatment effect is susceptible to local environment and tissue properties. Radiology 269:738–747

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The institution of S. B. Solomon received an unrestricted grant and equipment from AngioDynamics Inc. Stephen B. Solomon is a consultant for Covidien and received a grant from GE Healthcare.

Conflict of interest

Thomas Wimmer, Govindarajan Srimathveeravalli, Narendra Gutta, Paula C. Ezell, Sebastien Monette, Majid Maybody, Joseph P. Erinjery, Jeremy C. Durack, and Jonathan A. Coleman declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wimmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimmer, T., Srimathveeravalli, G., Gutta, N. et al. Planning Irreversible Electroporation in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?. Cardiovasc Intervent Radiol 38, 182–190 (2015). https://doi.org/10.1007/s00270-014-0905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-014-0905-2

Keywords

Navigation