Skip to main content

Advertisement

Log in

Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).

Methods

Sixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.

Results

All biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).

Conclusions

FP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  CAS  PubMed  Google Scholar 

  2. Miller TT (2008) Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology 246:662–674

    Article  PubMed  Google Scholar 

  3. Taira AV, Herfkens RJ, Gambhir SS, Quon A (2007) Detection of bone metastases: assessment of integrated FDG PET/CT imaging. Radiology 243:204–211

    Article  PubMed  Google Scholar 

  4. Wang CK, Li CW, Hsieh TJ, Chien SH, Liu GC, Tsai KB (2004) Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology 232:599–605

    Article  PubMed  Google Scholar 

  5. Goetz MP, Callstrom MR, Charboneau JW et al (2004) Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol 22:300–306

    Article  PubMed  Google Scholar 

  6. Rosenthal D, Callstrom MR (2012) Critical review and state of the art in interventional oncology: benign and metastatic disease involving bone. Radiology 262:765–780

    Article  PubMed  Google Scholar 

  7. Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M (2008) Palliative treatment of painful bone metastases with MR imaging-guided focused ultrasound. Radiology 249:355–363

    Article  PubMed  Google Scholar 

  8. Ayala AG, Zornosa J (1983) Primary bone tumors: percutaneous needle biopsy. Radiologic–pathologic study of 222 biopsies. Radiology 149:675–679

    Article  CAS  PubMed  Google Scholar 

  9. Jelinek JS, Murphey MD, Welker JA et al (2002) Diagnosis of primary bone tumors with image-guided percutaneous biopsy: experience with 110 tumors. Radiology 223:731–737

    Article  PubMed  Google Scholar 

  10. Solomon SB, Silverman SG (2010) Imaging in interventional oncology. Radiology 257:624–640

    Article  PubMed  Google Scholar 

  11. Sarti M, Brehmer WP, Gay SB (2012) Low-dose techniques in CT-guided interventions. Radiographics 32:1109–1119 discussion 1119–1120

    Article  PubMed  Google Scholar 

  12. Rimondi E, Rossi G, Bartalena T et al (2011) Percutaneous CT-guided biopsy of the musculoskeletal system: results of 2027 cases. Eur J Radiol 77:34–42

    Article  PubMed  Google Scholar 

  13. Heautot JF, Chabert E, Gandon Y et al (1998) Analysis of cerebrovascular diseases by a new 3-dimensional computerised X-ray angiography system. Neuroradiology 40:203–209

    Article  CAS  PubMed  Google Scholar 

  14. Deschamps F, Solomon SB, Thornton RH et al (2010) Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Intervent Radiol. doi:10.1007/s00270-010-9846-6

    Google Scholar 

  15. Braak SJ, van Strijen MJ, van Leersum M, van Es HW, van Heesewijk JP (2010) Real-Time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. AJR Am J Roentgenol 194:W445–W451

    Article  CAS  PubMed  Google Scholar 

  16. Descat E, Ferron S, Cornelis F, Palussiere J (2011) Fluoroscopy-guided percutaneous biopsies: value of real-time guidance with image fusion software. J Radiol 92:864–867

    Article  CAS  PubMed  Google Scholar 

  17. Tam AL, Mohamed A, Pfister M et al (2010) C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty. Spine (Phila Pa 1976) 35:1095–1099

    Google Scholar 

  18. Pedicelli A, Verdolotti T, Pompucci A et al (2011) Interventional spinal procedures guided and controlled by a 3D rotational angiographic unit. Skelet Radiol 40:1595–1601

    Article  Google Scholar 

  19. Cardella JF, Bakal CW, Bertino RE et al (2003) Quality improvement guidelines for image-guided percutaneous biopsy in adults. J Vasc Interv Radiol 14:S227–S230

    Article  PubMed  Google Scholar 

  20. Racadio JM, Babic D, Homan R et al (2007) Live 3D guidance in the interventional radiology suite. AJR Am J Roentgenol 189:W357–W364

    Article  PubMed  Google Scholar 

  21. Tsalafoutas IA, Tsapaki V, Triantopoulou C, Gorantonaki A, Papailiou J (2007) CT-guided interventional procedures without CT fluoroscopy assistance: patient effective dose and absorbed dose considerations. AJR Am J Roentgenol 188:1479–1484

    Article  PubMed  Google Scholar 

  22. Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kroeze SG, Huisman M, Verkooijen HM, van Diest PJ, Ruud Bosch JL, van den Bosch MA (2012) Real-time 3D fluoroscopy-guided large core needle biopsy of renal masses: a critical early evaluation according to the IDEAL recommendations. Cardiovasc Intervent Radiol 35:680–685

    Article  PubMed  Google Scholar 

  24. Braak SJ, van Melick HH, Onaca MG, van Heesewijk JP, van Strijen MJ (2012) 3D cone-beam CT guidance, a novel technique in renal biopsy-results in 41 patients with suspected renal masses. Eur Radiol 22:2547–2552

    Article  PubMed Central  PubMed  Google Scholar 

  25. Braak SJ, Herder GJ, van Heesewijk JP, van Strijen MJ (2012) Pulmonary masses: initial results of cone-beam CT guidance with needle planning software for percutaneous lung biopsy. Cardiovasc Intervent Radiol 35:1414–1421

    Article  PubMed  Google Scholar 

  26. Busser WM, Hoogeveen YL, Veth RP et al (2011) Percutaneous radiofrequency ablation of osteoid osteomas with use of real-time needle guidance for accurate needle placement: a pilot study. Cardiovasc Intervent Radiol 34:180–183

    Article  PubMed Central  PubMed  Google Scholar 

  27. Morimoto M, Numata K, Kondo M et al (2010) C-arm cone beam CT for hepatic tumor ablation under real-time 3D imaging. AJR Am J Roentgenol 194:W452–W454

    Article  PubMed  Google Scholar 

  28. Braak SJ, van Strijen MJ, van Es HW, Nievelstein RA, van Heesewijk JP (2011) Effective dose during needle interventions: cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol 22:455–461

    Article  PubMed  Google Scholar 

  29. Leschka SC, Babic D, El Shikh S, Wossmann C, Schumacher M, Taschner CA (2011) C-arm cone beam computed tomography needle path overlay for image-guided procedures of the spine and pelvis. Neuroradiology. doi:10.1007/s00234-011-0866-y

    PubMed  Google Scholar 

  30. Strocchi S, Colli V, Conte L (2012) Multidetector CT fluoroscopy and cone-beam CT-guided percutaneous transthoracic biopsy: comparison based on patient doses. Radiat Prot Dosim 151:162–165

    Article  CAS  Google Scholar 

  31. Kwok YM, Irani FG, Tay KH, Yang CC, Padre CG, Tan BS (2013) Effective dose estimates for cone beam computed tomography in interventional radiology. Eur Radiol 23:3197–3204

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki S, Furui S, Yamaguchi I et al (2009) Effective dose during abdominal three-dimensional imaging with a flat-panel detector angiography system. Radiology 250:545–550

    Article  PubMed  Google Scholar 

  33. Abi Jaoudeh N, Kruecker J, Kadoury S et al (2012) Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc Intervent Radiol 35:12

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Lorna Saint Ange for editing.

Conflict of interest

L. Tselikas, J. Joskin, G. Farouil, S. Dreuil, A. Hakimé, C. Teriitehau, A. Auperin, T. de Baere, and F. Deschamps have no financial disclosures relative to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lambros Tselikas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tselikas, L., Joskin, J., Roquet, F. et al. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance. Cardiovasc Intervent Radiol 38, 167–176 (2015). https://doi.org/10.1007/s00270-014-0870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-014-0870-9

Keywords

Navigation