Skip to main content
Log in

Image-Based Monitoring of Magnetic Resonance-Guided Thermoablative Therapies for Liver Tumors

  • Review/State of the Art
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Minimally invasive treatment options for liver tumor therapy have been increasingly used during the last decade because their benefit has been proven for primary and inoperable secondary liver tumors. Among these, radiofrequency ablation has gained widespread consideration. Optimal image-guidance offers precise anatomical information, helps to position interventional devices, and allows for differentiation between already-treated and remaining tumor tissue. Patient safety and complete ablation of the entire tumor are the overriding objectives of tumor ablation. These may be achieved most elegantly with magnetic resonance (MR)-guided therapy, where monitoring can be performed based on precise soft-tissue imaging and additional components, such as diffusion-weighted imaging and temperature mapping. New MR scanner types and newly developed sequence techniques have enabled MR-guided intervention to move beyond the experimental phase. This article reviews the current role of MR imaging in guiding radiofrequency ablation. Signal characteristics of primary and secondary liver tumors are identified, and signal alteration during therapy is described. Diffusion-weighted imaging (DWI) and temperature mapping as special components of MR therapy monitoring are introduced. Practical information concerning coils, sequence selection, and parameters, as well as sequence gating, is given. In addition, sources of artifacts are identified and techniques to decrease them are introduced, and the characteristic signs of residual tumor in T1-, T2-, and DWI are described. We hope to enable the reader to choose MR sequences that allow optimal therapy monitoring depending on the initial signal characteristics of the tumor as well as its size and location in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dupuy DE, Goldberg SN (2001) Image-guided radiofrequency tumor ablation: Challenges and opportunities―Part II. J Vasc Interv Radiol 12:1135–1148

    Article  PubMed  CAS  Google Scholar 

  2. Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities—Part I. J Vasc Intervent Radiol 12:1021–1032

    Article  Google Scholar 

  3. Rhim H, Goldberg SN, Dodd GD III et al (2001) Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics 21:S17–S35 discussion S36–19

    PubMed  Google Scholar 

  4. Gervais DA, McGovern FJ, Arellano RS et al (2003) Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology 226:417–424

    Article  PubMed  Google Scholar 

  5. Zagoria RJ, Hawkins AD, Clark PE et al (2004) Percutaneous CT-guided radiofrequency ablation of renal neoplasms: factors influencing success. AJR 183:201–207

    PubMed  Google Scholar 

  6. Zagoria RJ (2004) Imaging-guided radiofrequency ablation of renal masses. Radiographics 24(Suppl 1):S59–S71

    Article  PubMed  Google Scholar 

  7. Rosenthal DI, Hornicek FJ, Torriani M et al (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229:171–175

    Article  PubMed  Google Scholar 

  8. Motamedi D, Learch TJ, Ishimitsu DN et al (2009) Thermal ablation of osteoid osteoma: overview and step-by-step guide. Radiographics 29:2127–2141

    Article  PubMed  Google Scholar 

  9. Dupuy DE, Zagoria RJ, Akerley W et al (2000) Percutaneous radiofrequency ablation of malignancies in the lung. AJR 174:57–59

    PubMed  CAS  Google Scholar 

  10. Lencioni R, Crocetti L, Cioni R et al (2004) Radiofrequency ablation of lung malignancies: where do we stand? Cardiovasc Intervent Radiol 27:581–590

    Article  PubMed  Google Scholar 

  11. Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42:1208–1236

    Article  PubMed  Google Scholar 

  12. Llovet JM (2005) Updated treatment approach to hepatocellular carcinoma. J Gastroenterol 40:225–235

    Article  PubMed  Google Scholar 

  13. Kudo M (2010) Radiofrequency ablation for hepatocellular carcinoma: updated review in 2010. Oncology 78(Suppl 1):113–124

    Article  PubMed  Google Scholar 

  14. Veltri A, Sacchetto P, Tosetti I et al (2008) Radiofrequency ablation of colorectal liver metastases: small size favorably predicts technique effectiveness and survival. Cardiovasc Intervent Radiol 31:948–956

    Article  PubMed  Google Scholar 

  15. Gillams AR, Lees WR (2004) Radio-frequency ablation of colorectal liver metastases in 167 patients. Eur Radiol 14:2261–2267

    Article  PubMed  CAS  Google Scholar 

  16. Vogl TJ, Naguib NN, Eichler K et al (2008) Volumetric evaluation of liver metastases after thermal ablation: long-term results following MR-guided laser-induced thermotherapy. Radiology 249:865–871

    Article  PubMed  Google Scholar 

  17. Vogl TJ, Straub R, Eichler K et al (2003) Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy―local tumor control rate and survival data. Radiology 230:450–458

    Article  PubMed  Google Scholar 

  18. Pech M, Wieners G, Freund T et al (2007) MR-guided interstitial laser thermotherapy of colorectal liver metastases: efficiency, safety and patient survival. Eur J Med Res 12:161–168

    PubMed  CAS  Google Scholar 

  19. Leyendecker JR, Dodd GD III, Halff GA et al (2002) Sonographically observed echogenic response during intraoperative radiofrequency ablation of cirrhotic livers: pathologic correlation. AJR 178:1147–1151

    PubMed  Google Scholar 

  20. Solbiati L, Livraghi T, Goldberg SN et al (2001) Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 221:159–166

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg SN, Grassi CJ, Cardella JF et al (2009) Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20:S377–S390

    Article  PubMed  Google Scholar 

  22. Clasen S, Boss A, Schmidt D et al (2007) MR-guided radiofrequency ablation in a 0.2-T open MR system: technical success and technique effectiveness in 100 liver tumors. J Magn Reson Imaging 26:1043–1052

    Article  PubMed  Google Scholar 

  23. Kelekis AD, Terraz S, Roggan A et al (2003) Percutaneous treatment of liver tumors with an adapted probe for cooled-tip, impedance-controlled radio-frequency ablation under open-magnet MR guidance: initial results. Eur Radiol 13:1100–1105

    PubMed  Google Scholar 

  24. Mahnken AH, Buecker A, Spuentrup E et al (2004) MR-guided radiofrequency ablation of hepatic malignancies at 1.5 T: initial results. J Magn Reson Imaging 19:342–348

    Article  PubMed  Google Scholar 

  25. Venkatesan AM, Locklin J, Dupuy DE et al (2010) Percutaneous ablation of adrenal tumors. Tech Vasc Interv Radiol 13:89–99

    Article  PubMed  Google Scholar 

  26. McDannold N, Jolesz F (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11:191–202

    Article  PubMed  CAS  Google Scholar 

  27. Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12:525–533

    Article  PubMed  CAS  Google Scholar 

  28. Laumonier H, Blanc JF, Quesson B et al (2006) Real-time monitoring of hepatocellular carcinoma radiofrequency ablation by quantitative temperature MRI. Semin Liver Dis 26:391–397

    Article  PubMed  Google Scholar 

  29. Berber ESA (2008) Local recurrence after laparoscopic radiofrequency ablation of liver tumors: an analysis of 1032 tumors. Ann Surg Oncol 15:2757–2764

    Article  PubMed  Google Scholar 

  30. van Duijnhoven FH, Jansen MC, Junggeburt JM et al (2006) Factors influencing the local failure rate of radiofrequency ablation of colorectal liver metastases. Ann Surg Oncol 13:651–658

    Article  PubMed  Google Scholar 

  31. Gillams AR, Lees WR (2009) Five-year survival in 309 patients with colorectal liver metastases treated with radiofrequency ablation. Eur Radiol 19:1206–1213

    Article  PubMed  CAS  Google Scholar 

  32. Schulz T, Puccini S, Schneider JP et al (2004) Interventional and intraoperative MR: review and update of techniques and clinical experience. Eur Radiol 14:2212–2227

    Article  PubMed  Google Scholar 

  33. Clasen S, Pereira PL (2008) Magnetic resonance guidance for radiofrequency ablation of liver tumors. J Magn Reson Imaging 27:421–433

    Article  PubMed  Google Scholar 

  34. Gaffke G, Gebauer B, Knollmann FD (2006) Use of semiflexible applicators for radiofrequency ablation of liver tumors. Cardiovasc Intervent Radiol 29:270–275

    Article  PubMed  CAS  Google Scholar 

  35. Berber E, Herceg NL, Casto KJ et al (2004) Laparoscopic radiofrequency ablation of hepatic tumors: prospective clinical evaluation of ablation size comparing two treatment algorithms. Surg Endosc 18:390–396

    Article  PubMed  CAS  Google Scholar 

  36. Lencioni R, Goletti O, Armillotta N et al (1998) Radio-frequency thermal ablation of liver metastases with a cooled-tip electrode needle: results of a pilot clinical trial. Eur Radiol 8:1205–1211

    Article  PubMed  CAS  Google Scholar 

  37. de Baere T, Denys A, Wood BJ et al (2001) Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. AJR 176:187–192

    PubMed  Google Scholar 

  38. Aube C, Schmidt D, Brieger J et al (2004) Magnetic resonance imaging characteristics of six radiofrequency electrodes in a phantom study. J Vasc Interv Radiol 15:385–392

    Article  PubMed  Google Scholar 

  39. Lewin JS, Duerk JL, Jain VR et al (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR 166:1337–1345

    PubMed  CAS  Google Scholar 

  40. Daanen V, Coste E, Sergent G et al (2000) Accurate localization of needle entry point in interventional MRI. J Magn Reson Imaging 12:645–649

    Article  PubMed  CAS  Google Scholar 

  41. Rempp H, Waibel L, Hoffmann R et al (2011) MR-guided radiofrequency ablation in a wide-bore 1.5 T system: clinical results of 202 treated liver tumors [title in German]. Rofo (S 01) 183:289–290

    Google Scholar 

  42. Zimmermann H, Muller S, Gutmann B et al (2006) Targeted-HASTE imaging with automated device tracking for MR-guided needle interventions in closed-bore MR systems. Magn Reson Med 56:481–488

    Article  PubMed  CAS  Google Scholar 

  43. Hasse A, Frahm J, Matthaei D et al (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266

    Google Scholar 

  44. Oppelt A, Graummann R, Barfuss H et al (1986) FISP—a new fast MRI sequence. Electromedica 54:15–18

    Google Scholar 

  45. Duerk JL, Lewin JS, Wendt M et al (1998) Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at 2 T. J Magn Reson Imaging 8:203–208

    Article  PubMed  CAS  Google Scholar 

  46. Numminen K, Halavaara J, Isoniemi H et al (2003) Magnetic resonance imaging of the liver: true fast imaging with steady state free precession sequence facilitates rapid and reliable distinction between hepatic hemangiomas and liver malignancies. J Comput Assist Tomogr 27:571–576

    Article  PubMed  Google Scholar 

  47. Glover GH, Pauly JM (1992) Projection reconstruction techniques for decrease of motion effects in MRI. Magn Reson Med 28:275–289

    Article  PubMed  CAS  Google Scholar 

  48. Yutzy SR, Duerk JL (2008) Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging 27:267–275

    Article  PubMed  Google Scholar 

  49. van Vaals JJ, Brummer ME, Dixon WT et al (1993) “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675

    Article  PubMed  Google Scholar 

  50. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  PubMed  CAS  Google Scholar 

  51. Semelka RC, Martin DR, Balci C et al (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13:397–401

    Article  PubMed  CAS  Google Scholar 

  52. Graham SJ, Stanisz GJ, Kecojevic A et al (1999) Analysis of changes in MR properties of tissues after heat treatment. Magn Reson Med 42:1061–1071

    Article  PubMed  CAS  Google Scholar 

  53. Dromain C, de Baere T, Elias D et al (2002) Hepatic tumors treated with percutaneous radio-frequency ablation: CT and MR imaging follow-up. Radiology 223:255–262

    Article  PubMed  Google Scholar 

  54. Lee JD, Lee JM, Kim SW et al (2001) MR imaging-histopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J Radiol 2:151–158

    Article  PubMed  CAS  Google Scholar 

  55. Lazebnik RS, Breen MS, Fitzmaurice M et al (2003) Radio-frequency-induced thermal lesions: subacute magnetic resonance appearance and histological correlation. J Magn Reson Imaging 18:487–495

    Article  PubMed  Google Scholar 

  56. Boaz TL, Lewin JS, Chung YC et al (1998) MR monitoring of MR-guided radiofrequency thermal ablation of normal liver in an animal model. J Magn Reson Imaging 8:64–69

    Article  PubMed  CAS  Google Scholar 

  57. Merkle EM, Boll DT, Boaz T et al (1999) MRI-guided radiofrequency thermal ablation of implanted VX2 liver tumors in a rabbit model: demonstration of feasibility at 0.2 T. Magn Reson Med 42:141–149

    Article  PubMed  CAS  Google Scholar 

  58. Braga L, Semelka RC (2005) Magnetic resonance imaging features of focal liver lesions after intervention. Top Magn Reson Imaging 16:99–106

    Article  PubMed  Google Scholar 

  59. Tsuda M, Rikimaru H, Majima K et al (2003) Time-related changes of radiofrequency ablation lesion in the normal rabbit liver: findings of magnetic resonance imaging and histopathology. Invest Radiol 38:525–531

    PubMed  Google Scholar 

  60. Sequeiros RB, Kariniemi J, Ojala R et al (2010) Liver tumor laser ablation―increase in the subacute ablation lesion volume detected with post procedural MRI. Acta Radiol 51:505–511

    Article  PubMed  Google Scholar 

  61. Graham SJ, Bronskill MJ, Henkelman RM (1998) Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 39:198–203

    Article  PubMed  CAS  Google Scholar 

  62. Schraml C, Schwenzer NF, Clasen S et al (2009) Navigator respiratory-triggered diffusion-weighted imaging in the follow-up after hepatic radiofrequency ablation—initial results. J Magn Reson Imaging 29:1308–1316

    Article  PubMed  Google Scholar 

  63. Germain D, Chevallier P, Laurent A et al (2001) MR monitoring of tumour thermal therapy. MAGMA 13:47–59

    PubMed  CAS  Google Scholar 

  64. De Poorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34:359–367

    Article  PubMed  Google Scholar 

  65. Lepetit-Coiffe M, Laumonier H, Seror O et al (2010) Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up. Eur Radiol 20:193–201

    Article  PubMed  Google Scholar 

  66. Roujol S, Ries M, Quesson B et al (2010) Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs. Magn Reson Med 63:1080–1087

    Article  PubMed  Google Scholar 

  67. Boss A, Graf H, Muller-Bierl B et al (2005) Magnetic susceptibility effects on the accuracy of MR temperature monitoring by the proton resonance frequency method. J Magn Reson Imaging 22:813–820

    Article  PubMed  Google Scholar 

  68. Rempp H, Clasen S, Boss A et al (2009) Prediction of cell necrosis with sequential temperature mapping after radiofrequency ablation. J Magn Reson Imaging 30:631–639

    Article  PubMed  Google Scholar 

  69. Seror O, Lepetit-Coiffe M, Le Bail B et al (2008) Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo. Eur Radiol 18:408–416

    Article  PubMed  Google Scholar 

  70. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800

    Article  PubMed  CAS  Google Scholar 

  71. Sironi S, Livraghi T, Meloni F et al (1999) Small hepatocellular carcinoma treated with percutaneous RF ablation: MR imaging follow-up. AJR 173:1225–1229

    PubMed  CAS  Google Scholar 

  72. Sadowski EA, Bennett LK, Chan MR et al (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157

    Article  PubMed  Google Scholar 

  73. Kim MJ, Kim JH, Chung JJ et al (2003) Focal hepatic lesions: detection and characterization with combination gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology 228:719–726

    Article  PubMed  Google Scholar 

  74. Konig CW, Trubenbach J, Fritz J et al (2004) Contrast enhanced MR-guided biopsy of hepatocellular carcinoma. Abdom Imaging 29:71–76

    Article  PubMed  CAS  Google Scholar 

  75. Joarder R, de Jode M, Lamb GA et al (2001) The value of MnDPDP enhancement during MR guided laser interstitial thermoablation of liver tumors. J Magn Reson Imaging 13:37–41

    Article  PubMed  CAS  Google Scholar 

  76. Bartolozzi C, Donati F, Cioni D et al (2004) Detection of colorectal liver metastases: a prospective multicenter trial comparing unenhanced MRI, MnDPDP-enhanced MRI, and spiral CT. Eur Radiol 14:14–20

    Article  PubMed  Google Scholar 

  77. Kim YK, Lee JM, Kim CS (2004) Gadobenate dimeglumine-enhanced liver MR imaging: value of dynamic and delayed imaging for the characterization and detection of focal liver lesions. Eur Radiol 14:5–13

    Article  PubMed  Google Scholar 

  78. Rofsky NM, Lee VS, Laub G et al (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212:876–884

    PubMed  CAS  Google Scholar 

  79. Heidemann RM, Ozsarlak O, Parziel PM et al (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337

    Article  PubMed  Google Scholar 

  80. Lee VS, Lavelle MT, Rofsky NM et al (2000) Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 215:365–372

    PubMed  CAS  Google Scholar 

  81. Earls JP, Rofsky NM, DeCorato DR et al (1996) Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology 201:705–710

    PubMed  CAS  Google Scholar 

  82. Kierans AS, Elazzazi M, Braga L et al (2010) Thermoablative treatments for malignant liver lesions: 10-year experience of MRI appearances of treatment response. AJR 194:523–529

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Many thanks to Eva Rothgang for her help.

Conflict of interest

Philippe Pereira is consultant for Siemens Healthcare, Erlangen, Germany, and receives grants from Olympus Celon, Teltow, Germany. The other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjörg Rempp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rempp, H., Clasen, S. & Pereira, P.L. Image-Based Monitoring of Magnetic Resonance-Guided Thermoablative Therapies for Liver Tumors. Cardiovasc Intervent Radiol 35, 1281–1294 (2012). https://doi.org/10.1007/s00270-011-0227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-011-0227-6

Keywords

Navigation