CardioVascular and Interventional Radiology

, Volume 35, Issue 6, pp 1281–1294 | Cite as

Image-Based Monitoring of Magnetic Resonance-Guided Thermoablative Therapies for Liver Tumors

  • Hansjörg Rempp
  • Stephan Clasen
  • Philippe L. Pereira
Review/State of the Art


Minimally invasive treatment options for liver tumor therapy have been increasingly used during the last decade because their benefit has been proven for primary and inoperable secondary liver tumors. Among these, radiofrequency ablation has gained widespread consideration. Optimal image-guidance offers precise anatomical information, helps to position interventional devices, and allows for differentiation between already-treated and remaining tumor tissue. Patient safety and complete ablation of the entire tumor are the overriding objectives of tumor ablation. These may be achieved most elegantly with magnetic resonance (MR)-guided therapy, where monitoring can be performed based on precise soft-tissue imaging and additional components, such as diffusion-weighted imaging and temperature mapping. New MR scanner types and newly developed sequence techniques have enabled MR-guided intervention to move beyond the experimental phase. This article reviews the current role of MR imaging in guiding radiofrequency ablation. Signal characteristics of primary and secondary liver tumors are identified, and signal alteration during therapy is described. Diffusion-weighted imaging (DWI) and temperature mapping as special components of MR therapy monitoring are introduced. Practical information concerning coils, sequence selection, and parameters, as well as sequence gating, is given. In addition, sources of artifacts are identified and techniques to decrease them are introduced, and the characteristic signs of residual tumor in T1-, T2-, and DWI are described. We hope to enable the reader to choose MR sequences that allow optimal therapy monitoring depending on the initial signal characteristics of the tumor as well as its size and location in the liver.


Interventional oncology Non-vasular interventions Radiofrequency ablation Hepatocellular carcinoma Tumor Neoplasm Laser-induced thermotherapy RFA LITT 



Many thanks to Eva Rothgang for her help.

Conflict of interest

Philippe Pereira is consultant for Siemens Healthcare, Erlangen, Germany, and receives grants from Olympus Celon, Teltow, Germany. The other authors have no conflict of interest.


  1. 1.
    Dupuy DE, Goldberg SN (2001) Image-guided radiofrequency tumor ablation: Challenges and opportunities―Part II. J Vasc Interv Radiol 12:1135–1148PubMedCrossRefGoogle Scholar
  2. 2.
    Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities—Part I. J Vasc Intervent Radiol 12:1021–1032CrossRefGoogle Scholar
  3. 3.
    Rhim H, Goldberg SN, Dodd GD III et al (2001) Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics 21:S17–S35 discussion S36–19PubMedGoogle Scholar
  4. 4.
    Gervais DA, McGovern FJ, Arellano RS et al (2003) Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology 226:417–424PubMedCrossRefGoogle Scholar
  5. 5.
    Zagoria RJ, Hawkins AD, Clark PE et al (2004) Percutaneous CT-guided radiofrequency ablation of renal neoplasms: factors influencing success. AJR 183:201–207PubMedGoogle Scholar
  6. 6.
    Zagoria RJ (2004) Imaging-guided radiofrequency ablation of renal masses. Radiographics 24(Suppl 1):S59–S71PubMedCrossRefGoogle Scholar
  7. 7.
    Rosenthal DI, Hornicek FJ, Torriani M et al (2003) Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 229:171–175PubMedCrossRefGoogle Scholar
  8. 8.
    Motamedi D, Learch TJ, Ishimitsu DN et al (2009) Thermal ablation of osteoid osteoma: overview and step-by-step guide. Radiographics 29:2127–2141PubMedCrossRefGoogle Scholar
  9. 9.
    Dupuy DE, Zagoria RJ, Akerley W et al (2000) Percutaneous radiofrequency ablation of malignancies in the lung. AJR 174:57–59PubMedGoogle Scholar
  10. 10.
    Lencioni R, Crocetti L, Cioni R et al (2004) Radiofrequency ablation of lung malignancies: where do we stand? Cardiovasc Intervent Radiol 27:581–590PubMedCrossRefGoogle Scholar
  11. 11.
    Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42:1208–1236PubMedCrossRefGoogle Scholar
  12. 12.
    Llovet JM (2005) Updated treatment approach to hepatocellular carcinoma. J Gastroenterol 40:225–235PubMedCrossRefGoogle Scholar
  13. 13.
    Kudo M (2010) Radiofrequency ablation for hepatocellular carcinoma: updated review in 2010. Oncology 78(Suppl 1):113–124PubMedCrossRefGoogle Scholar
  14. 14.
    Veltri A, Sacchetto P, Tosetti I et al (2008) Radiofrequency ablation of colorectal liver metastases: small size favorably predicts technique effectiveness and survival. Cardiovasc Intervent Radiol 31:948–956PubMedCrossRefGoogle Scholar
  15. 15.
    Gillams AR, Lees WR (2004) Radio-frequency ablation of colorectal liver metastases in 167 patients. Eur Radiol 14:2261–2267PubMedCrossRefGoogle Scholar
  16. 16.
    Vogl TJ, Naguib NN, Eichler K et al (2008) Volumetric evaluation of liver metastases after thermal ablation: long-term results following MR-guided laser-induced thermotherapy. Radiology 249:865–871PubMedCrossRefGoogle Scholar
  17. 17.
    Vogl TJ, Straub R, Eichler K et al (2003) Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy―local tumor control rate and survival data. Radiology 230:450–458PubMedCrossRefGoogle Scholar
  18. 18.
    Pech M, Wieners G, Freund T et al (2007) MR-guided interstitial laser thermotherapy of colorectal liver metastases: efficiency, safety and patient survival. Eur J Med Res 12:161–168PubMedGoogle Scholar
  19. 19.
    Leyendecker JR, Dodd GD III, Halff GA et al (2002) Sonographically observed echogenic response during intraoperative radiofrequency ablation of cirrhotic livers: pathologic correlation. AJR 178:1147–1151PubMedGoogle Scholar
  20. 20.
    Solbiati L, Livraghi T, Goldberg SN et al (2001) Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 221:159–166PubMedCrossRefGoogle Scholar
  21. 21.
    Goldberg SN, Grassi CJ, Cardella JF et al (2009) Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20:S377–S390PubMedCrossRefGoogle Scholar
  22. 22.
    Clasen S, Boss A, Schmidt D et al (2007) MR-guided radiofrequency ablation in a 0.2-T open MR system: technical success and technique effectiveness in 100 liver tumors. J Magn Reson Imaging 26:1043–1052PubMedCrossRefGoogle Scholar
  23. 23.
    Kelekis AD, Terraz S, Roggan A et al (2003) Percutaneous treatment of liver tumors with an adapted probe for cooled-tip, impedance-controlled radio-frequency ablation under open-magnet MR guidance: initial results. Eur Radiol 13:1100–1105PubMedGoogle Scholar
  24. 24.
    Mahnken AH, Buecker A, Spuentrup E et al (2004) MR-guided radiofrequency ablation of hepatic malignancies at 1.5 T: initial results. J Magn Reson Imaging 19:342–348PubMedCrossRefGoogle Scholar
  25. 25.
    Venkatesan AM, Locklin J, Dupuy DE et al (2010) Percutaneous ablation of adrenal tumors. Tech Vasc Interv Radiol 13:89–99PubMedCrossRefGoogle Scholar
  26. 26.
    McDannold N, Jolesz F (2000) Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging 11:191–202PubMedCrossRefGoogle Scholar
  27. 27.
    Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12:525–533PubMedCrossRefGoogle Scholar
  28. 28.
    Laumonier H, Blanc JF, Quesson B et al (2006) Real-time monitoring of hepatocellular carcinoma radiofrequency ablation by quantitative temperature MRI. Semin Liver Dis 26:391–397PubMedCrossRefGoogle Scholar
  29. 29.
    Berber ESA (2008) Local recurrence after laparoscopic radiofrequency ablation of liver tumors: an analysis of 1032 tumors. Ann Surg Oncol 15:2757–2764PubMedCrossRefGoogle Scholar
  30. 30.
    van Duijnhoven FH, Jansen MC, Junggeburt JM et al (2006) Factors influencing the local failure rate of radiofrequency ablation of colorectal liver metastases. Ann Surg Oncol 13:651–658PubMedCrossRefGoogle Scholar
  31. 31.
    Gillams AR, Lees WR (2009) Five-year survival in 309 patients with colorectal liver metastases treated with radiofrequency ablation. Eur Radiol 19:1206–1213PubMedCrossRefGoogle Scholar
  32. 32.
    Schulz T, Puccini S, Schneider JP et al (2004) Interventional and intraoperative MR: review and update of techniques and clinical experience. Eur Radiol 14:2212–2227PubMedCrossRefGoogle Scholar
  33. 33.
    Clasen S, Pereira PL (2008) Magnetic resonance guidance for radiofrequency ablation of liver tumors. J Magn Reson Imaging 27:421–433PubMedCrossRefGoogle Scholar
  34. 34.
    Gaffke G, Gebauer B, Knollmann FD (2006) Use of semiflexible applicators for radiofrequency ablation of liver tumors. Cardiovasc Intervent Radiol 29:270–275PubMedCrossRefGoogle Scholar
  35. 35.
    Berber E, Herceg NL, Casto KJ et al (2004) Laparoscopic radiofrequency ablation of hepatic tumors: prospective clinical evaluation of ablation size comparing two treatment algorithms. Surg Endosc 18:390–396PubMedCrossRefGoogle Scholar
  36. 36.
    Lencioni R, Goletti O, Armillotta N et al (1998) Radio-frequency thermal ablation of liver metastases with a cooled-tip electrode needle: results of a pilot clinical trial. Eur Radiol 8:1205–1211PubMedCrossRefGoogle Scholar
  37. 37.
    de Baere T, Denys A, Wood BJ et al (2001) Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. AJR 176:187–192PubMedGoogle Scholar
  38. 38.
    Aube C, Schmidt D, Brieger J et al (2004) Magnetic resonance imaging characteristics of six radiofrequency electrodes in a phantom study. J Vasc Interv Radiol 15:385–392PubMedCrossRefGoogle Scholar
  39. 39.
    Lewin JS, Duerk JL, Jain VR et al (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR 166:1337–1345PubMedGoogle Scholar
  40. 40.
    Daanen V, Coste E, Sergent G et al (2000) Accurate localization of needle entry point in interventional MRI. J Magn Reson Imaging 12:645–649PubMedCrossRefGoogle Scholar
  41. 41.
    Rempp H, Waibel L, Hoffmann R et al (2011) MR-guided radiofrequency ablation in a wide-bore 1.5 T system: clinical results of 202 treated liver tumors [title in German]. Rofo (S 01) 183:289–290Google Scholar
  42. 42.
    Zimmermann H, Muller S, Gutmann B et al (2006) Targeted-HASTE imaging with automated device tracking for MR-guided needle interventions in closed-bore MR systems. Magn Reson Med 56:481–488PubMedCrossRefGoogle Scholar
  43. 43.
    Hasse A, Frahm J, Matthaei D et al (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266Google Scholar
  44. 44.
    Oppelt A, Graummann R, Barfuss H et al (1986) FISP—a new fast MRI sequence. Electromedica 54:15–18Google Scholar
  45. 45.
    Duerk JL, Lewin JS, Wendt M et al (1998) Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at 2 T. J Magn Reson Imaging 8:203–208PubMedCrossRefGoogle Scholar
  46. 46.
    Numminen K, Halavaara J, Isoniemi H et al (2003) Magnetic resonance imaging of the liver: true fast imaging with steady state free precession sequence facilitates rapid and reliable distinction between hepatic hemangiomas and liver malignancies. J Comput Assist Tomogr 27:571–576PubMedCrossRefGoogle Scholar
  47. 47.
    Glover GH, Pauly JM (1992) Projection reconstruction techniques for decrease of motion effects in MRI. Magn Reson Med 28:275–289PubMedCrossRefGoogle Scholar
  48. 48.
    Yutzy SR, Duerk JL (2008) Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging 27:267–275PubMedCrossRefGoogle Scholar
  49. 49.
    van Vaals JJ, Brummer ME, Dixon WT et al (1993) “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675PubMedCrossRefGoogle Scholar
  50. 50.
    Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969PubMedCrossRefGoogle Scholar
  51. 51.
    Semelka RC, Martin DR, Balci C et al (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13:397–401PubMedCrossRefGoogle Scholar
  52. 52.
    Graham SJ, Stanisz GJ, Kecojevic A et al (1999) Analysis of changes in MR properties of tissues after heat treatment. Magn Reson Med 42:1061–1071PubMedCrossRefGoogle Scholar
  53. 53.
    Dromain C, de Baere T, Elias D et al (2002) Hepatic tumors treated with percutaneous radio-frequency ablation: CT and MR imaging follow-up. Radiology 223:255–262PubMedCrossRefGoogle Scholar
  54. 54.
    Lee JD, Lee JM, Kim SW et al (2001) MR imaging-histopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J Radiol 2:151–158PubMedCrossRefGoogle Scholar
  55. 55.
    Lazebnik RS, Breen MS, Fitzmaurice M et al (2003) Radio-frequency-induced thermal lesions: subacute magnetic resonance appearance and histological correlation. J Magn Reson Imaging 18:487–495PubMedCrossRefGoogle Scholar
  56. 56.
    Boaz TL, Lewin JS, Chung YC et al (1998) MR monitoring of MR-guided radiofrequency thermal ablation of normal liver in an animal model. J Magn Reson Imaging 8:64–69PubMedCrossRefGoogle Scholar
  57. 57.
    Merkle EM, Boll DT, Boaz T et al (1999) MRI-guided radiofrequency thermal ablation of implanted VX2 liver tumors in a rabbit model: demonstration of feasibility at 0.2 T. Magn Reson Med 42:141–149PubMedCrossRefGoogle Scholar
  58. 58.
    Braga L, Semelka RC (2005) Magnetic resonance imaging features of focal liver lesions after intervention. Top Magn Reson Imaging 16:99–106PubMedCrossRefGoogle Scholar
  59. 59.
    Tsuda M, Rikimaru H, Majima K et al (2003) Time-related changes of radiofrequency ablation lesion in the normal rabbit liver: findings of magnetic resonance imaging and histopathology. Invest Radiol 38:525–531PubMedGoogle Scholar
  60. 60.
    Sequeiros RB, Kariniemi J, Ojala R et al (2010) Liver tumor laser ablation―increase in the subacute ablation lesion volume detected with post procedural MRI. Acta Radiol 51:505–511PubMedCrossRefGoogle Scholar
  61. 61.
    Graham SJ, Bronskill MJ, Henkelman RM (1998) Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 39:198–203PubMedCrossRefGoogle Scholar
  62. 62.
    Schraml C, Schwenzer NF, Clasen S et al (2009) Navigator respiratory-triggered diffusion-weighted imaging in the follow-up after hepatic radiofrequency ablation—initial results. J Magn Reson Imaging 29:1308–1316PubMedCrossRefGoogle Scholar
  63. 63.
    Germain D, Chevallier P, Laurent A et al (2001) MR monitoring of tumour thermal therapy. MAGMA 13:47–59PubMedGoogle Scholar
  64. 64.
    De Poorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34:359–367PubMedCrossRefGoogle Scholar
  65. 65.
    Lepetit-Coiffe M, Laumonier H, Seror O et al (2010) Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up. Eur Radiol 20:193–201PubMedCrossRefGoogle Scholar
  66. 66.
    Roujol S, Ries M, Quesson B et al (2010) Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs. Magn Reson Med 63:1080–1087PubMedCrossRefGoogle Scholar
  67. 67.
    Boss A, Graf H, Muller-Bierl B et al (2005) Magnetic susceptibility effects on the accuracy of MR temperature monitoring by the proton resonance frequency method. J Magn Reson Imaging 22:813–820PubMedCrossRefGoogle Scholar
  68. 68.
    Rempp H, Clasen S, Boss A et al (2009) Prediction of cell necrosis with sequential temperature mapping after radiofrequency ablation. J Magn Reson Imaging 30:631–639PubMedCrossRefGoogle Scholar
  69. 69.
    Seror O, Lepetit-Coiffe M, Le Bail B et al (2008) Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo. Eur Radiol 18:408–416PubMedCrossRefGoogle Scholar
  70. 70.
    Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800PubMedCrossRefGoogle Scholar
  71. 71.
    Sironi S, Livraghi T, Meloni F et al (1999) Small hepatocellular carcinoma treated with percutaneous RF ablation: MR imaging follow-up. AJR 173:1225–1229PubMedGoogle Scholar
  72. 72.
    Sadowski EA, Bennett LK, Chan MR et al (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157PubMedCrossRefGoogle Scholar
  73. 73.
    Kim MJ, Kim JH, Chung JJ et al (2003) Focal hepatic lesions: detection and characterization with combination gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology 228:719–726PubMedCrossRefGoogle Scholar
  74. 74.
    Konig CW, Trubenbach J, Fritz J et al (2004) Contrast enhanced MR-guided biopsy of hepatocellular carcinoma. Abdom Imaging 29:71–76PubMedCrossRefGoogle Scholar
  75. 75.
    Joarder R, de Jode M, Lamb GA et al (2001) The value of MnDPDP enhancement during MR guided laser interstitial thermoablation of liver tumors. J Magn Reson Imaging 13:37–41PubMedCrossRefGoogle Scholar
  76. 76.
    Bartolozzi C, Donati F, Cioni D et al (2004) Detection of colorectal liver metastases: a prospective multicenter trial comparing unenhanced MRI, MnDPDP-enhanced MRI, and spiral CT. Eur Radiol 14:14–20PubMedCrossRefGoogle Scholar
  77. 77.
    Kim YK, Lee JM, Kim CS (2004) Gadobenate dimeglumine-enhanced liver MR imaging: value of dynamic and delayed imaging for the characterization and detection of focal liver lesions. Eur Radiol 14:5–13PubMedCrossRefGoogle Scholar
  78. 78.
    Rofsky NM, Lee VS, Laub G et al (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212:876–884PubMedGoogle Scholar
  79. 79.
    Heidemann RM, Ozsarlak O, Parziel PM et al (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337PubMedCrossRefGoogle Scholar
  80. 80.
    Lee VS, Lavelle MT, Rofsky NM et al (2000) Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 215:365–372PubMedGoogle Scholar
  81. 81.
    Earls JP, Rofsky NM, DeCorato DR et al (1996) Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology 201:705–710PubMedGoogle Scholar
  82. 82.
    Kierans AS, Elazzazi M, Braga L et al (2010) Thermoablative treatments for malignant liver lesions: 10-year experience of MRI appearances of treatment response. AJR 194:523–529PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2011

Authors and Affiliations

  • Hansjörg Rempp
    • 1
  • Stephan Clasen
    • 1
  • Philippe L. Pereira
    • 2
  1. 1.Department of Diagnostic and Interventional RadiologyEberhard Karls University of TübingenTübingenGermany
  2. 2.Clinic for Radiology, Nuclear Medicine, and Minimal Invasive TherapiesSLK-KlinikenHeilbronnGermany

Personalised recommendations