Advertisement

CardioVascular and Interventional Radiology

, Volume 34, Issue 2, pp 271–279 | Cite as

Superiority of Transcutaneous Oxygen Tension Measurements in Predicting Limb Salvage After Below-the-Knee Angioplasty: A Prospective Trial in Diabetic Patients With Critical Limb Ischemia

  • Ulf Redlich
  • Yan Y. Xiong
  • Maciej Pech
  • Jörg Tautenhahn
  • Zuhir Halloul
  • Ralf Lobmann
  • Daniela Adolf
  • Jens Ricke
  • Oliver Dudeck
Clinical Investigation

Abstract

Purpose

To assess postprocedural angiograms, the ankle–brachial index (ABI), and transcutaneous oxygen tension (TcPO2) to predict outcome after infrageniculate angioplasty (PTA) in diabetic patients with critical limb ischemia (CLI) scheduled for amputation.

Materials and Methods

PTA was performed in 28 diabetic patients with CLI confined to infrapopliteal vessels. We recorded patency of crural vessels, including the vascular supply of the foot as well as the ABI and TcPO2 of the foot.

Results

Technical success rate was 92.9% (n = 26), and limb-salvage rate at 12 months was 60.7% (n = 17). The number of patent straight vessels above and below the level of the malleoli increased significantly in patients avoiding amputation. Amputation was unnecessary in 88.2% (n = 15) patients when patency of at least one tibial artery was achieved. In 72.7% (n = 8) of patients, patency of the peroneal artery alone was not sufficient for limb salvage. ABI was of no predictive value for limb salvage. TcPO2 values increased significantly only in patients not requiring amputation (P = 0.015). In patients with only one tibial artery supplying the foot or only a patent peroneal artery in postprocedural angiograms, TcPO2 was capable of reliably predicting the outcome.

Conclusion

Below-the-knee PTA as an isolated part of therapy was effective to prevent major amputation in more than a half of diabetic patients with CLI. TcPO2 was a valid predictor for limb salvage, even when angiographic outcome criteria failed.

Keywords

Ankle–brachial index Below-the-knee angioplasty Critical limb ischemia Diabetes Major amputation Postprocedural angiogram Transcutaneous oxygen tension 

Notes

Conflicts of interest

There are no conflicts of interest.

References

  1. 1.
    Faglia E, Clerici G, Caminiti M et al (2010) Mortality after major amputation in diabetic patients with critical limb ischemia who did and did not undergo previous peripheral revascularization: Data of a cohort study of 564 consecutive diabetic patients. J Diabetes Complications 24:265–269CrossRefPubMedGoogle Scholar
  2. 2.
    TransAtlantic Inter-Society Consensus (2000) Management of peripheral arterial disease (PAD). TransAtlantic Inter-Society Consensus (TASC). Section D: Chronic critical limb ischaemia. Eur J Vasc Endovasc Surg 19(Suppl A):144–243Google Scholar
  3. 3.
    Norgren L, Hiatt WR, Dormandy JA et al (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg 33(Suppl 1):1–75CrossRefGoogle Scholar
  4. 4.
    Ameli FM, Byrne P, Provan JL (1989) Selection of amputation level and prediction of healing using transcutaneous tissue oxygen tension (PtcO2). J Cardiovasc Surg (Torino) 30:220–224Google Scholar
  5. 5.
    Fife CE, Smart DR, Sheffield PJ et al (2009) Transcutaneous oximetry in clinical practice: consensus statements from an expert panel based on evidence. Undersea Hyperb Med 36:43–53PubMedGoogle Scholar
  6. 6.
    Caruana MF, Bradbury AW, Adam DJ (2005) The validity, reliability, reproducibility and extended utility of ankle to brachial pressure index in current vascular surgical practice. Eur J Vasc Endovasc Surg 29:443–451CrossRefPubMedGoogle Scholar
  7. 7.
    Faglia E, Dalla PL, Clerici G et al (2003) Peripheral angioplasty as the first-choice revascularization procedure in diabetic patients with critical limb ischemia: prospective study of 993 consecutive patients hospitalized and followed between 1999 and 2003. Eur J Vasc Endovasc Surg 29:620–627CrossRefGoogle Scholar
  8. 8.
    Pecoraro RE, Reiber GE, Burgess EM (1990) Pathways to diabetic limb amputation. Basis for prevention. Diabetes Care 13:513–521CrossRefPubMedGoogle Scholar
  9. 9.
    Adler AI, Boyko EJ, Ahroni JH et al (1999) Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. Diabetes Care 22:1029–1035CrossRefPubMedGoogle Scholar
  10. 10.
    Kalani M, Brismar K, Fagrell B et al (1999) Transcutaneous oxygen tension and toe blood pressure as predictors for outcome of diabetic foot ulcers. Diabetes Care 22:147–151CrossRefPubMedGoogle Scholar
  11. 11.
    Grolman RE, Wilkerson DK, Taylor J et al (2001) Transcutaneous oxygen measurements predict a beneficial response to hyperbaric oxygen therapy in patients with nonhealing wounds and critical limb ischemia. Am Surg 67:1072–1079PubMedGoogle Scholar
  12. 12.
    Fife CE, Buyukcakir C, Otto GH et al (2002) The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy: a retrospective analysis of 1,144 patients. Wound Repair Regen 10:198–207CrossRefPubMedGoogle Scholar
  13. 13.
    Greenhalgh DG, Warden GD (1992) Transcutaneous oxygen and carbon dioxide measurements for determination of skin graft “take”. J Burn Care Rehabil 13:334–339CrossRefPubMedGoogle Scholar
  14. 14.
    Misuri A, Lucertini G, Nanni A et al (2000) Predictive value of transcutaneous oximetry for selection of the amputation level. J Cardiovasc Surg (Torino) 41:83–87Google Scholar
  15. 15.
    Faglia E, Clerici G, Caminiti M et al (2007) Predictive values of transcutaneous oxygen tension for above-the-ankle amputation in diabetic patients with critical limb ischemia. Eur J Vasc Endovasc Surg 33:731–736CrossRefPubMedGoogle Scholar
  16. 16.
    Caselli A, Latini V, Lapenna A et al (2005) Transcutaneous oxygen tension monitoring after successful revascularization in diabetic patients with ischaemic foot ulcers. Diabet Med 22:460–465CrossRefPubMedGoogle Scholar
  17. 17.
    Manzi M, Fusaro M, Ceccacci T et al (2009) Clinical results of below-the knee intervention using pedal-plantar loop technique for the revascularization of foot arteries. J Cardiovasc Surg (Torino) 50:331–337Google Scholar
  18. 18.
    Markose G, Bolia A (2009) Below the knee angioplasty among diabetic patients. J Cardiovasc Surg (Torino) 50:323–329Google Scholar
  19. 19.
    Tsetis D, Belli AM (2004) The role of infrapopliteal angioplasty. Br J Radiol 77:1007–1015CrossRefPubMedGoogle Scholar
  20. 20.
    Wang J, Zhu YQ, Zhao JG et al (2009) Infrapopliteal angioplasty with a long over-the-wire (OTW) balloon in the treatment of severe limb ischemia in diabetic patients: a retrospective study. Acta Radiol 50:360–367CrossRefPubMedGoogle Scholar
  21. 21.
    Alfke H, Vannucchi A, Froelich JJ et al (2007) Long-term results after balloon angioplasty of the crural artery. Rofo 179:811–817PubMedGoogle Scholar
  22. 22.
    Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg 31:1–296CrossRefGoogle Scholar
  23. 23.
    Conrad MF, Kang J, Cambria RP et al (2009) Infrapopliteal balloon angioplasty for the treatment of chronic occlusive disease. J Vasc Surg 50:799–805CrossRefPubMedGoogle Scholar
  24. 24.
    Schwarzwalder U, Zeller T (2009) Below-the-knee revascularization. Advanced techniques. J Cardiovasc Surg (Torino) 50:627–634Google Scholar
  25. 25.
    Gandini R, Volpi T, Pampana E et al (2009) Applicability and clinical results of percutaneous transluminal angioplasty with a novel, long, conically shaped balloon dedicated for below-the knee interventions. J Cardiovasc Surg (Torino) 50:365–371Google Scholar
  26. 26.
    Faglia E, Mantero M, Caminiti M et al (2002) Extensive use of peripheral angioplasty, particularly infrapopliteal, in the treatment of ischaemic diabetic foot ulcers: clinical results of a multicentric study of 221 consecutive diabetic subjects. J Intern Med 252:225–232CrossRefPubMedGoogle Scholar
  27. 27.
    Met R, Koelemay MJ, Bipat S et al (2010) Always contact a vascular interventional specialist before amputating a patient with critical limb ischemia. Cardiovasc Intervent Radiol 33:469–474CrossRefPubMedGoogle Scholar
  28. 28.
    Bargellini I, Petruzzi P, Scatena A et al (2008) Primary infrainguinal subintimal angioplasty in diabetic patients. Cardiovasc Intervent Radiol 31:713–722CrossRefPubMedGoogle Scholar
  29. 29.
    Randon C, Jacobs B, De Ryck F et al (2010) Angioplasty or primary stenting for infrapopliteal lesions: results of a prospective randomized trial. Cardiovasc Intervent Radiol 33:260–269CrossRefPubMedGoogle Scholar
  30. 30.
    Bull PG, Mendel H, Hold M et al (1992) Distal popliteal and tibioperoneal transluminal angioplasty: long-term follow-up. J Vasc Interv Radiol 3:45–53CrossRefPubMedGoogle Scholar
  31. 31.
    Bakal CW, Sprayregen S, Scheinbaum K et al (1990) Percutaneous transluminal angioplasty of the infrapopliteal arteries: results in 53 patients. Am J Roentgenol 154:171–174Google Scholar
  32. 32.
    Brown KT, Moore ED, Getrajdman GI et al (1993) Infrapopliteal angioplasty: long-term follow-up. J Vasc Interv Radiol 4:139–144CrossRefPubMedGoogle Scholar
  33. 33.
    Ubbink DT, Spincemaille GH, Reneman RS et al (1999) Prediction of imminent amputation in patients with non-reconstructible leg ischemia by means of microcirculatory investigations. J Vasc Surg 30:114–121CrossRefPubMedGoogle Scholar
  34. 34.
    Kuusela J, Manninen HI, Karhapää P (2009) Infrapopliteal balloon angioplasty for chronic critical limb ischemia in diabetic patients with uremia: when is it worth the effort? J Vasc Interv Radiol 20:342–346CrossRefPubMedGoogle Scholar
  35. 35.
    Slovut DP, Sullivan TM (2008) Critical limb ischemia: medical and surgical management. Vasc Med 13:281–291CrossRefPubMedGoogle Scholar
  36. 36.
    Hanna GP, Fujise K, Kjellgren O et al (1997) Infrapopliteal transcatheter interventions for limb salvage in diabetic patients: importance of aggressive interventional approach and role of transcutaneous oximetry. J Am Coll Cardiol 30:664–669CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2010

Authors and Affiliations

  • Ulf Redlich
    • 1
    • 2
  • Yan Y. Xiong
    • 1
  • Maciej Pech
    • 1
  • Jörg Tautenhahn
    • 3
  • Zuhir Halloul
    • 3
  • Ralf Lobmann
    • 4
    • 5
  • Daniela Adolf
    • 6
  • Jens Ricke
    • 1
  • Oliver Dudeck
    • 1
  1. 1.Department of Radiology and Nuclear MedicineUniversity of MagdeburgMagdeburgGermany
  2. 2.Department of RadiologyHarz Klinikum WernigerodeWernigerodeGermany
  3. 3.Department of Vascular SurgeryUniversity of MagdeburgMagdeburgGermany
  4. 4.Department of EndocrinologyUniversity of MagdeburgMagdeburgGermany
  5. 5.Department of Endocrinology, Diabetology, and GeriatyKlinikum Stuttgart, BürgerhospitalStuttgartGermany
  6. 6.Institute of Biometry and Medical InformaticsUniversity of MagdeburgMagdeburgGermany

Personalised recommendations