Skip to main content
Log in

Whole-Body Magnetic Resonance Angiography with Additional Steady-State Acquisition of the Infragenicular Arteries in Patients with Peripheral Arterial Disease

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The purpose of this investigation was to determine if addition of infragenicular steady-state (SS) magnetic resonance angiography (MRA) to first-pass imaging improves diagnostic performance compared with first-pass imaging alone in patients with peripheral arterial disease (PAD) undergoing whole-body (WB) MRA. Twenty consecutive patients with PAD referred to digital-subtraction angiography (DSA) underwent WB-MRA. Using a bolus-chase technique, first-pass WB-MRA was performed from the supra-aortic vessels to the ankles. The blood-pool contrast agent gadofosveset trisodium was used at a dose of 0.03 mmol/kg body weight. Ten minutes after injection of the contrast agent, high-resolution (0.7-mm isotropic voxels) SS-MRA of the infragenicular arteries was performed. Using DSA as the “gold standard,” sensitivities and specificities for detecting significant arterial stenoses (≥50% luminal narrowing) with first-pass WB-MRA, SS-MRA, and combined first-pass and SS-MRA were calculated. Kappa statistics were used to determine intermodality agreement between MRA and DSA. Overall sensitivity and specificity for detecting significant arterial stenoses with first-pass WB-MRA was 0.70 (95% confidence interval 0.61 to 0.78) and 0.97 (0.94 to 0.99), respectively. In first-pass WB-MRA, the lowest sensitivity was in the infragenicular region, with a value of 0.42 (0.23 to 0.63). Combined analysis of first-pass WB-MRA and SS-MRA increased sensitivity to 0.81 (0.60 to 0.93) in the infragenicular region, with specificity of 0.94 (0.88 to 0.97). Sensitivity and specificity for detecting significant arterial stenoses with isolated infragenicular SS-MRA was 0.47 (0.27 to 0.69) and 0.86 (0.78 to 0.91), respectively. Intermodality agreement between MRA and DSA in the infragenicular region was moderate for first-pass WB-MRA (κ = 0.49), fair for SS-MRA (κ = 0.31), and good for combined first-pass/SS-MRA (κ = 0.71). Addition of infragenicular SS-MRA to first-pass WB MRA improves diagnostic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collins R, Burch J, Cranny G et al (2007) Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. Br Med J 334:1257–1266

    Article  Google Scholar 

  2. Koelemay MJ, Lijmer JG, Stoker J et al (2001) Magnetic resonance angiography for the evaluation of lower extremity arterial disease: a meta-analysis. JAMA 285:1338–1345

    Article  PubMed  CAS  Google Scholar 

  3. Goyen M, Quick HH, Debatin JF et al (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224:270–277

    Article  PubMed  Google Scholar 

  4. Hansen T, Wikstrom J, Eriksson MO et al (2006) Whole-body magnetic resonance angiography of patients using a standard clinical scanner. Eur Radiol 16:147–153

    Article  PubMed  Google Scholar 

  5. Ruehm SG, Goyen M, Barkhausen J et al (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357(9262):1086–1091

    Article  PubMed  CAS  Google Scholar 

  6. Ruehm SG, Goehde SC, Goyen M (2004) Whole body MR angiography screening. Int J Cardiovasc Imaging 20:587–591

    Article  PubMed  Google Scholar 

  7. Lauffer RB, Parmelee DJ, Dunham SU et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    PubMed  CAS  Google Scholar 

  8. Goyen M (2008) Gadofosveset-enhanced magnetic resonance angiography. Vasc Health Risk Manag 4:1–9

    Article  PubMed  CAS  Google Scholar 

  9. Grist TM, Korosec FR, Peters DC et al (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207:539–544

    PubMed  CAS  Google Scholar 

  10. Hadizadeh DR, Gieseke J, Lohmaier SH et al (2008) Peripheral MR angiography with blood pool contrast agent: prospective intraindividual comparative study of high-spatial-resolution steady-state MR angiography versus standard-resolution first-pass MR Angiography and DSA. Radiology 249:701–711

    Article  PubMed  Google Scholar 

  11. Michaely HJ, Attenberger UI, Dietrich O et al (2008) Feasibility of gadofosveset-enhanced steady-state magnetic resonance angiography of the peripheral vessels at 3 Tesla with Dixon fat saturation. Invest Radiol 43:635–641

    Article  PubMed  Google Scholar 

  12. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 30:461–470

    Google Scholar 

  13. Nielsen YW, Eiberg JP, Logager VB et al (2009) Whole-body MR angiography with body coil acquisition at 3 T in patients with peripheral arterial disease using the contrast agent gadofosveset trisodium. Acad Radiol 16:654–661

    Article  PubMed  Google Scholar 

  14. Fenchel M, Requardt M, Tomaschko K et al (2005) Whole-body MR angiography using a novel 32-receiving-channel MR system with surface coil technology: first clinical experience. J Magn Reson Imaging 21:596–603

    Article  PubMed  Google Scholar 

  15. Goyen M, Herborn CU, Kroger K et al (2003) Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three-dimensional MR angiography—initial experience. Radiology 227:277–282

    Article  PubMed  Google Scholar 

  16. Herborn CU, Goyen M, Quick HH et al (2004) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol 182:1427–1434

    PubMed  Google Scholar 

  17. Hartmann M, Wiethoff AJ, Hentrich HR et al (2006) Initial imaging recommendations for Vasovist angiography. Eur Radiol 16(Suppl 2):B15–B23

    PubMed  Google Scholar 

  18. Rohrer M, Bauer H, Mintorovitch J et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  19. Hoogeveen RM, Bakker CJ, Viergever MA (1998) Limits to the accuracy of vessel diameter measurement in MR angiography. J Magn Reson Imaging 8:1228–1235

    Article  PubMed  CAS  Google Scholar 

  20. Maki JH, Wilson GJ, Eubank WB et al (2002) Utilizing SENSE to achieve lower station sub-millimeter isotropic resolution and minimal venous enhancement in peripheral MR angiography. J Magn Reson Imaging 15:484–491

    Article  PubMed  Google Scholar 

  21. Alexandrova NA, Gibson WC, Norris JW et al (1996) Carotid artery stenosis in peripheral vascular disease. J Vasc Surg 23:645–649

    Article  PubMed  CAS  Google Scholar 

  22. Drouet L (2002) Atherothrombosis as a systemic disease. Cerebrovasc Dis 13(Suppl 1):1–6

    Article  PubMed  Google Scholar 

  23. Wachtell K, Ibsen H, Olsen MH et al (1996) Prevalence of renal artery stenosis in patients with peripheral vascular disease and hypertension. J Hum Hypertens 10:83–85

    PubMed  CAS  Google Scholar 

  24. Goyen M, Herborn CU, Kroger K et al (2006) Total-body 3D magnetic resonance angiography influences the management of patients with peripheral arterial occlusive disease. Eur Radiol 16:685–691

    Article  PubMed  Google Scholar 

  25. Goehde SC, Hunold P, Vogt FM et al (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. AJR Am J Roentgenol 184:598–611

    PubMed  Google Scholar 

  26. Hansen T, Ahlstrom H, Johansson L (2007) Whole-body screening of atherosclerosis with magnetic resonance angiography. Top Magn Reson Imaging 18:329–337

    Article  PubMed  Google Scholar 

  27. Hansen T, Ahlstrom H, Wikstrom J et al (2008) A total atherosclerotic score for whole-body MRA and its relation to traditional cardiovascular risk factors. Eur Radiol 18:1174–1180

    Article  PubMed  CAS  Google Scholar 

  28. Ladd SC, Debatin JF, Stang A et al (2007) Whole-body MR vascular screening detects unsuspected concomitant vascular disease in coronary heart disease patients. Eur Radiol 17:1035–1045

    Article  PubMed  Google Scholar 

  29. de Vries M, Nijenhuis RJ, Hoogeveen RM et al (2005) Contrast-enhanced peripheral MR angiography using SENSE in multiple stations: feasibility study. J Magn Reson Imaging 21:37–45

    Article  PubMed  Google Scholar 

  30. Fenchel M, Doering J, Seeger A et al (2008) Ultrafast whole-body MR angiography with two-dimensional parallel imaging at 3.0 T: feasibility study. Radiology 250:254–263

    Article  PubMed  Google Scholar 

  31. Klessen C, Hein PA, Huppertz A et al (2007) First-pass whole-body magnetic resonance angiography (MRA) using the blood-pool contrast medium gadofosveset trisodium: comparison to gadopentetate dimeglumine. Invest Radiol 42:659–664

    Article  PubMed  Google Scholar 

  32. Nael K, Ruehm SG, Michaely HJ et al (2007) Multistation whole-body high-spatial-resolution MR angiography using a 32-channel MR system. AJR Am J Roentgenol 188:529–539

    Article  PubMed  Google Scholar 

  33. Nael K, Krishnam M, Nael A et al (2008) Peripheral contrast-enhanced MR angiography at 3.0T, improved spatial resolution and low dose contrast: initial clinical experience. Eur Radiol 18:2893–2900

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef W. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, Y.W., Eiberg, J.P., Løgager, V.B. et al. Whole-Body Magnetic Resonance Angiography with Additional Steady-State Acquisition of the Infragenicular Arteries in Patients with Peripheral Arterial Disease. Cardiovasc Intervent Radiol 33, 484–491 (2010). https://doi.org/10.1007/s00270-009-9759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-009-9759-4

Keywords

Navigation