Skip to main content

Advertisement

Log in

Impact of Stent Design on In-Stent Stenosis in a Rabbit Iliac Artery Model

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the impact of stent design on in-stent stenosis in rabbit iliac arteries. Four different types of stent were implanted in rabbit iliac arteries, being different in stent design (crown or wave) and strut thickness (50 or 100 μm). Ten stents of each type were implanted. Each animal received one crown and one wave stent with the same strut thickness. Follow-up was either 12 weeks (n = 10 rabbits) or 24 weeks (n = 10 rabbits). Primary study end points were angiographic and microscopic in-stent stenosis. Secondary study end points were vessel injury, vascular inflammation, and stent endothelialization. Average stent diameter, relative stent overdilation, average and minimal luminal diameter, and relative average and maximum luminal loss were not significantly different. However, a trend to higher relative stent overdilation was recognized in crown stents compared to wave stents. A trend toward higher average and minimal luminal diameter and lower relative average and maximum luminal loss was recognized in crown stents compared to wave stents with a strut thickness of 100 μm. Neointimal height, relative luminal area stenosis, injury score, inflammation score, and endothelialization score were not significantly different. However, a trend toward higher neointimal height was recognized in crown stents compared to wave stents with a strut thickness of 50 μm and a follow-up of 24 weeks. In conclusion, in this study, crown stents seem to trigger neointima. However, the optimized radial force might equalize the theoretically higher tendency for restenosis in crown stents. In this context, also more favorable positive remodeling in crown stents could be important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fischman DL, Leon MB, Baim DS et al (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 331(8):496–501

    Article  PubMed  CAS  Google Scholar 

  2. Daemen J, Wenaweser P, Tsuchida K et al (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice:data from a large two-institutional cohort study. Lancet 369(9562):667–678

    Article  PubMed  CAS  Google Scholar 

  3. Teirstein PS (1998) Gamma versus beta radiation for the treatment of restenosis. Herz 23(6):335–336

    Article  PubMed  CAS  Google Scholar 

  4. Maintz D, Seifarth H, Raupach R et al (2006) 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 16(4):818–826

    Article  PubMed  Google Scholar 

  5. Hara H, Nakamura M, Palmaz JC, Schwartz RS (2006) Role of stent design and coatings on restenosis and thrombosis. Adv Drug Deliv Rev 58(3):377–386

    Article  PubMed  CAS  Google Scholar 

  6. Bosiers M, Deloose K, Verbist J, Peeters P (2005) Carotid artery stenting: Which stent for which lesion? Vascular 13(4):205–210

    Article  PubMed  Google Scholar 

  7. Ormiston JA, Dixon SR, Webster MW et al (2000) Stent longitudinal flexibility: a comparison of 13 stent designs before and after balloon expansion. Catheter Cardiovasc Interv 50(1):120–124

    Article  PubMed  CAS  Google Scholar 

  8. Kastrati A, Mehilli J, Dirschinger J et al (2001) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103(23):2816–2821

    PubMed  CAS  Google Scholar 

  9. Pache J, Dibra A, Mehilli J et al (2005) Drug-eluting stents compared with thin-strut bare stents for the reduction of restenosis: a prospective, randomized trial. Eur Heart J 26(13):1262–1268

    Article  PubMed  Google Scholar 

  10. Pache J, Kastrati A, Mehilli J et al (2003) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol 41(8):1283–1288

    Article  PubMed  Google Scholar 

  11. Rittersma SZ, de Winter RJ, Koch KT et al (2004) Impact of strut thickness on late luminal loss after coronary artery stent placement. Am J Cardiol 93(4):477–480

    Article  PubMed  Google Scholar 

  12. Yorozuya M, Suzuki H, Iso Y et al (2002) Comparison of the morphological changes of restenosis after the implantation of various types of stents in a swine model. Coron Artery Dis 13(6):305–312

    Article  PubMed  Google Scholar 

  13. Satzl S, Henn C, Christoph P, Kurz P et al (2007) The efficacy of nanoscale poly[bis(trifluoroethoxy) phosphazene] (PTFEP) coatings in reducing thrombogenicity and late in-stent stenosis in a porcine coronary artery model. Invest Radiol 42(5):303–311

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz RS, Edelman ER, Carter A et al (2004) Preclinical evaluation of drug-eluting stents for peripheral applications: recommendations from an expert consensus group. Circulation 110(16):2498–2505

    Article  PubMed  Google Scholar 

  15. Schwartz RS, Edelman ER, Carter A et al (2002) Drug-eluting stents in preclinical studies: recommended evaluation from a consensus group. Circulation 106(14):1867–1873

    Article  PubMed  Google Scholar 

  16. Kornowski R, Hong MK, Tio FO et al (1998) In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 31(1):224–230

    Article  PubMed  CAS  Google Scholar 

  17. Bersin RM (2008) Does carotid stent design influence outcomes? Catheter Cardiovasc Interv 72(6):863–866

    Article  PubMed  Google Scholar 

  18. Schrader SC, Beyar R (1998) Evaluation of the compressive mechanical properties of endoluminal metal stents. Cathet Cardiovasc Diagn 44(2):179–187

    Article  PubMed  CAS  Google Scholar 

  19. Rogers C, Edelman ER (1995) Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91(12):2995–3001

    PubMed  CAS  Google Scholar 

  20. Pierce DS, Rosero EB, Modrall JG et al (2009) Open-cell versus closed-cell stent design differences in blood flow velocities after carotid stenting. J Vasc Surg 49(3):602–606; discussion 606

    Article  PubMed  Google Scholar 

  21. LaDisa JF Jr, Olson LE, Hettrick DA et al (2005) Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening. Biomed Eng Online 4:59

    Article  PubMed  Google Scholar 

  22. Grenacher L, Deutsch J, Lubienski A, Richter GM (2003) Resistance to hoop stress in balloon expandable stents: evaluation in an ex vivo model. Invest Radiol 38(2):65–72

    Article  PubMed  Google Scholar 

  23. Schwarzenberg H, Muller-Hulsbeck S, Gluer CC et al (1998) Restenosis of peripheral stents and stent grafts as revealed by intravascular sonography: in vivo comparison with angiography. AJR Am J Roentgenol 170(5):1181–1185

    PubMed  CAS  Google Scholar 

  24. Yamamoto Y, Brown DL, Ischinger TA et al (1999) Effect of stent design on reduction of elastic recoil: a comparison via quantitative intravascular ultrasound. Catheter Cardiovasc Interv 47(2):251–257

    Article  PubMed  CAS  Google Scholar 

  25. Palmaz JC, Bailey S, Marton D, Sprague E (2002) Influence of stent design and material composition on procedure outcome. J Vasc Surg 36(5):1031–1039

    Article  PubMed  Google Scholar 

  26. He Y, Duraiswamy N, Frank AO, Moore JE Jr (2005) Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J Biomech Eng 127(4):637–647

    Article  PubMed  Google Scholar 

  27. Palmaz JC, Benson A, Sprague EA (1999) Influence of surface topography on endothelialization of intravascular metallic material. J Vasc Interv Radiol 10(4):439–444

    Article  PubMed  CAS  Google Scholar 

  28. LaDisa JF Jr, Olson LE, Guler I et al (2004) Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J Appl Physiol 97(1):424–430; discussion 416

    Article  PubMed  Google Scholar 

  29. Briguori C, Sarais C, Pagnotta P et al (2002) In-stent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol 40(3):403–409

    Article  PubMed  Google Scholar 

  30. Schatz RA (1989) A view of vascular stents. Circulation 79(2):445–457

    PubMed  CAS  Google Scholar 

  31. Oesterle SN, Whitbourn R, Fitzgerald PJ, et al. (1998) The stent decade: 1987 to 1997. Stanford Stent Summit faculty. Am Heart J 136(4; Pt 1):578–599

    Google Scholar 

  32. Schwartz RS, Topol EJ, Serruys PW et al (1998) Artery size, neointima, and remodeling:time for some standards. J Am Coll Cardiol 32(7):2087–2094

    Article  PubMed  CAS  Google Scholar 

  33. Edelman ER, Rogers C (1996) Hoop dreams. Stents without restenosis. Circulation 94(6):1199–1202

    PubMed  CAS  Google Scholar 

  34. Kreutzer J, Rome JJ (2002) Open-cell design stents in congenital heart disease: a comparison of IntraStent vs. Palmaz stents. Catheter Cardiovasc Interv 56(3):400–409

    Article  PubMed  Google Scholar 

  35. Simon C, Palmaz JC, Sprague EA (2000) Influence of topography on endothelialization of stents: clues for new designs. J Long Term Eff Med Implants 10(1–2):143–151

    PubMed  CAS  Google Scholar 

  36. Mintz GS, Popma JJ, Pichard AD et al (1996) Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 94(1):35–43

    PubMed  CAS  Google Scholar 

  37. Schwartz RS, Topol EJ, Serruys PW et al (1998) Artery size, neointima, and remodeling: time for some standards. J Am Coll Cardiol 32(7):2087–2094

    Article  PubMed  CAS  Google Scholar 

  38. Hoffmann R, Mintz GS, Dussaillant GR et al (1996) Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 94(6):1247–1254

    PubMed  CAS  Google Scholar 

  39. Escaned J, Goicolea J, Alfonso F et al (1999) Propensity and mechanisms of restenosis in different coronary stent designs: complementary value of the analysis of the luminal gain-loss relationship. J Am Coll Cardiol 34(5):1490–1497

    Article  PubMed  CAS  Google Scholar 

  40. Post MJ, Borst C, Kuntz RE (1994) The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig. Circulation 89(6):2816–2821

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Sincere thanks are given to Kerstin M. Knautz (Master of Arts; mail@kerstin-meike-knautz.de) for elaboration of the graphical illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, C.M., Grenacher, L., Stampfl, U. et al. Impact of Stent Design on In-Stent Stenosis in a Rabbit Iliac Artery Model. Cardiovasc Intervent Radiol 33, 565–575 (2010). https://doi.org/10.1007/s00270-009-9757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-009-9757-6

Keywords

Navigation