Skip to main content
Log in

Late Stent Expansion and Neointimal Proliferation of Oversized Nitinol Stents in Peripheral Arteries

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

For peripheral endovascular intervention, self-expanding (SE) stents are commonly oversized in relation to target arteries to assure optimal wall apposition and prevent migration. However, the consequences of oversizing have not been well studied. The purpose of this study was to examine the effects of SE stent oversizing (OS) with respect to the kinetics of late stent expansion and the long-term histological effects of OS. Pairs of overlapped 8 × 28-mm Nitinol SE stents were implanted into the iliofemoral arteries of 14 Yucatan swine. Due to variations in target artery size, the stent-to-artery ratio ranged from 1.2:1 to 1.9:1. Lumen and stent diameters were assessed by quantitative angiography at the time of implantation. Following angiographic assessment at 6 months, stented arteries were perfusion-fixed, sectioned, and stained for histological analysis. Immediately following implantation, the stents were found to be expanded to a range of 4.7–7.1 mm, largely conforming to the diameter of the recipient target artery. The stents continued to expand over time, however, and all stents had enlarged to nearly their 8-mm nominal diameter by 6 months. The histological effects of OS were profound, with marked increases in injury and luminal area stenosis, including a statistically significant linear correlation between stent-to-artery ratio and area stenosis. In this experimental model of peripheral endovascular intervention, oversized Nitinol SE stents are constrained by their target artery diameter upon implantation but expand to their nominal diameter within 6 months. Severe OS (stent-to-artery ratio >1.4:1) results in a profound long-term histological response including exuberant neointimal proliferation and luminal stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rogers JH, Laird JR (2007) Overview of new technologies for lower extremity revascularization. Circulation 116(18):2072–2085

    Article  PubMed  Google Scholar 

  2. Schillinger M, Minar E (2007) Endovascular stent implantation for treatment of peripheral artery disease. Eur J Clin Invest 37(3):165–170

    Article  PubMed  CAS  Google Scholar 

  3. Han RO, Schwartz RS, Kobayashi Y et al (2001) Comparison of self-expanding and balloon-expandable stents for the reduction of restenosis. Am J Cardiol 88(3):253–259

    Article  PubMed  CAS  Google Scholar 

  4. Kobayashi Y, Honda Y, Christie GL et al (2001) Long-term vessel response to a self-expanding coronary stent: a serial volumetric intravascular ultrasound analysis from the ASSURE trial. A stent vs. stent ultrasound remodeling evaluation. J Am Coll Cardiol 37(5):1329–1334

    Article  PubMed  CAS  Google Scholar 

  5. Schwartz RS, Huber KC, Murphy JG et al (1992) Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 19(2):267–274

    PubMed  CAS  Google Scholar 

  6. Duda SH, Wiskirchen J, Tepe G et al (2000) Physical properties of endovascular stents: an experimental comparison. J Vasc Interv Radiol 11(5):645–654

    Article  PubMed  CAS  Google Scholar 

  7. Carter AJ, Scott D, Laird JR et al (1998) Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding nitinol stent in an experimental model. Cathet Cardiovasc Diagn 44(2):193–201

    Article  PubMed  CAS  Google Scholar 

  8. Liu Y, Dang C, Garcia M, Gregersen H, Kassab GS (2007) Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. Am J Physiol Heart Circ Physiol 293(6):H3290–H3300

    Article  PubMed  CAS  Google Scholar 

  9. Bia Santana D, Armentano RL, Zocalo Y et al (2007) Functional properties of fresh and cryopreserved carotid and femoral arteries, and of venous and synthetic grafts: comparison with arteries from normotensive and hypertensive patients. Cell Tissue Bank 8(1):43–57

    Article  Google Scholar 

  10. Bia D, Zocalo Y, Pessana F et al (2006) Viscoelastic and functional similarities between native femoral arteries and fresh or cryopreserved arterial and venous homografts. Rev Esp Cardiol 59(7):679–687

    Article  PubMed  Google Scholar 

  11. Hamilton AJ, Kim H, Nagaraj A et al (2005) Regional material property alterations in porcine femoral arteries with atheroma development. J Biomech 38(12):2354–2364

    Article  PubMed  Google Scholar 

  12. Hong MK, Beyar R, Kornowski R, Tio FO, Bramwell O, Leon MB (1997) Acute and chronic effects of self-expanding nitinol stents in porcine coronary arteries. Coron Artery Dis 8(1):45–48

    Article  PubMed  CAS  Google Scholar 

  13. Roguin A, Grenadier E, Linn S, Markiewicz W, Beyar R (1999) Continued expansion of the nitinol self-expanding coronary stent: angiographic analysis and 1-year clinical follow-up. Am Heart J 138(2 Pt 1):326–333

    Article  PubMed  CAS  Google Scholar 

  14. Sanmartin M, Goicolea J, Alfonso F et al (2002) Implications of late expansion of self-expanding stents on neointimal response: a serial study with intravascular ultrasound. Rev Esp Cardiol 55(1):16–24

    PubMed  Google Scholar 

  15. Shofti R, Tio F, Beyar R (2004) Neointimal vascularization and intimal thickening in response to self-expanding stents: a swine model. Int J Cardiovasc Interv 6(2):61–67

    Google Scholar 

  16. Clark DJ, Lessio S, O’Donoghue M, Tsalamandris C, Schainfeld R, Rosenfield K (2006) Mechanisms and predictors of carotid artery stent restenosis: a serial intravascular ultrasound study. J Am Coll Cardiol 47(12):2390–2396

    Article  PubMed  Google Scholar 

  17. Willfort-Ehringer A, Ahmadi R, Gruber D et al (2004) Arterial remodeling and hemodynamics in carotid stents: a prospective duplex ultrasound study over 2 years. J Vasc Surg 39(4):728–734

    Article  PubMed  Google Scholar 

  18. Carter AJ, Laird JR, Farb A, Kufs W, Wortham DC, Virmani R (1994) Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model. J Am Coll Cardiol 24(5):1398–1405

    Article  PubMed  CAS  Google Scholar 

  19. Edelman ER, Rogers C (1998) Pathobiologic responses to stenting. Am J Cardiol 81(7):4E–6E

    Article  PubMed  CAS  Google Scholar 

  20. Schwartz RS, Murphy JG, Edwards WD, Camrud AR, Vliestra RE, Holmes DR (1990) Restenosis after balloon angioplasty A. practical proliferative model in porcine coronary arteries. Circulation 82(6):2190–2200

    PubMed  CAS  Google Scholar 

  21. Allaire E, Clowes AW (1997) Endothelial cell injury in cardiovascular surgery: the intimal hyperplastic response. Ann Thorac Surg 63(2):582–591

    Article  PubMed  CAS  Google Scholar 

  22. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  PubMed  CAS  Google Scholar 

  23. Lee MS, David EM, Makkar RR, Wilentz JR (2004) Molecular and cellular basis of restenosis after percutaneous coronary intervention: the intertwining roles of platelets, leukocytes, and the coagulation-fibrinolysis system. J Pathol 203(4):861–870

    Article  PubMed  CAS  Google Scholar 

  24. Anderson JM (2001) Biological response to materials. Annu Rev Mater Res 31:81–110

    Article  CAS  Google Scholar 

  25. Virmani R, Kolodgie FD, Farb A, Lafont A (2003) Drug eluting stents: are human and animal studies comparable? Heart 89(2):133–138

    Article  PubMed  CAS  Google Scholar 

  26. Welt FG, Edelman ER, Simon DI, Rogers C (2000) Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries. Arterioscler Thromb Vasc Biol 20(12):2553–2558

    PubMed  CAS  Google Scholar 

  27. Zamora CA, Sugimoto K, Yamaguchi M, Sugimura K (2005) Effect of stent oversizing on in-stent stenosis and lumen size in normal porcine veins. J Endovasc Ther 12:495–502

    Article  PubMed  Google Scholar 

  28. Yamaguchi MSK, Zamora CA et al (2006) Placement of self-expanding stents with different diameters in the porcine venous system: an experimental study. J Vasc Interv Radiol 17:113–119

    PubMed  Google Scholar 

  29. Yu ZX, Tamai H, Kyo E et al (2002) Comparison of the self-expanding Radius stent and the balloon-expandable Multilink stent for elective treatment of coronary stenoses: a serial analysis by intravascular ultrasound. Catheter Cardiovasc Interv 56(1):40–45

    Article  PubMed  Google Scholar 

  30. Taylor AJ, Gorman PD, Kenwood B, Hudak C, Tashko G, Virmani R (2001) A comparison of four stent designs on arterial injury, cellular proliferation, neointima formation, and arterial dimensions in an experimental porcine model. Catheter Cardiovasc Interv 53(3):420–425

    Article  PubMed  CAS  Google Scholar 

  31. Clark DJ, O’Donoghue M et al (2006) Mechanisms and predictors of carotid artery stent restenosis. J Am Coll Cardiol 47:2390–2396

    Article  PubMed  Google Scholar 

  32. Piamsomboon C, Lu MW et al (1998) Relationship between oversizing of self-expanding stents and late loss index in carotid stenting. Cathet Cardiovasc Diagn 45:139–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Q. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H.Q., Nikanorov, A., Virmani, R. et al. Late Stent Expansion and Neointimal Proliferation of Oversized Nitinol Stents in Peripheral Arteries. Cardiovasc Intervent Radiol 32, 720–726 (2009). https://doi.org/10.1007/s00270-009-9601-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-009-9601-z

Keywords

Navigation