Skip to main content
Log in

Whole-Body Magnetic Resonance Angiography at 3 Tesla Using a Hybrid Protocol in Patients with Peripheral Arterial Disease

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the diagnostic performance of 3T whole-body magnetic resonance angiography (WB-MRA) using a hybrid protocol in comparison with a standard protocol in patients with peripheral arterial disease (PAD). In 26 consecutive patients with PAD two different protocols were used for WB-MRA: a standard sequential protocol (n = 13) and a hybrid protocol (n = 13). WB-MRA was performed using a gradient echo sequence, body coil for signal reception, and gadoterate meglumine as contrast agent (0.3 mmol/kg body weight). Two blinded observers evaluated all WB-MRA examinations with regard to presence of stenoses, as well as diagnostic quality and degree of venous contamination in each of the four stations used in WB-MRA. Digital subtraction angiography served as the method of reference. Sensitivity for detecting significant arterial disease (luminal narrowing ≥ 50%) using standard-protocol WB-MRA for the two observers was 0.63 (95%CI: 0.51–0.73) and 0.66 (0.58–0.78). Specificities were 0.94 (0.91–0.97) and 0.96 (0.92–0.98), respectively. In the hybrid protocol WB-MRA sensitivities were 0.75 (0.64–0.84) and 0.70 (0.58–0.8), respectively. Specificities were 0.93 (0.88–0.96) and 0.95 (0.91–0.97). Interobserver agreement was good using both the standard and the hybrid protocol, with κ = 0.62 (0.44–0.67) and κ = 0.70 (0.59–0.79), respectively. WB-MRA quality scores were significantly higher in the lower leg using the hybrid protocol compared to standard protocol (p = 0.003 and p = 0.03, observers 1 and 2). Distal venous contamination scores were significantly lower with the hybrid protocol (p = 0.02 and p = 0.01, observers 1 and 2). In conclusion, hybrid-protocol WB-MRA shows a better diagnostic performance than standard protocol WB-MRA at 3 T in patients with PAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ruehm SG, Goyen M, Barkhausen J et al (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357(9262):1086–1091

    Article  PubMed  CAS  Google Scholar 

  2. Fenchel M, Scheule AM, Stauder NI et al (2006) Atherosclerotic disease: whole-body cardiovascular imaging with MR system with 32 receiver channels and total-body surface coil technology—initial clinical results. Radiology 238(1):280–291

    Article  PubMed  Google Scholar 

  3. Goyen M, Herborn CU, Kroger K et al (2003) Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three-dimensional MR angiography—initial experience. Radiology 227(1):277–282

    Article  PubMed  Google Scholar 

  4. Goyen M, Herborn CU, Kroger K et al (2006) Total-body 3D magnetic resonance angiography influences the management of patients with peripheral arterial occlusive disease. Eur Radiol 16(3):685–691

    Article  PubMed  Google Scholar 

  5. Herborn CU, Goyen M, Quick HH et al (2004) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR 182(6):1427–1434

    PubMed  Google Scholar 

  6. Brennan DD, Johnston C, O’Brien J et al (2005) Contrast-enhanced bolus-chased whole-body MR angiography using a moving tabletop and quadrature body coil acquisition. AJR 185(3):750–755

    PubMed  Google Scholar 

  7. Goyen M, Quick HH, Debatin JF et al (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224(1):270–277

    Article  PubMed  Google Scholar 

  8. Hansen T, Wikstrom J, Eriksson MO et al (2006) Whole-body magnetic resonance angiography of patients using a standard clinical scanner. Eur Radiol 16(1):147–153

    Article  PubMed  Google Scholar 

  9. Meissner OA, Rieger J, Weber C et al (2005) Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology 235(1):308–318

    Article  PubMed  Google Scholar 

  10. Pereles FS, Collins JD, Carr JC et al (2006) Accuracy of stepping-table lower extremity MR angiography with dual-level bolus timing and separate calf acquisition:hybrid peripheral MR angiography. Radiology 240(1):283–290

    Article  PubMed  Google Scholar 

  11. Schmitt R, Coblenz G, Cherevatyy O et al (2005) Comprehensive MR angiography of the lower limbs:a hybrid dual-bolus approach including the pedal arteries. Eur Radiol 15(12):2513–2524

    Article  PubMed  CAS  Google Scholar 

  12. Tongdee R, Narra VR, McNeal G et al (2006) Hybrid peripheral 3D contrast-enhanced MR angiography of calf and foot vasculature. AJR 186(6):1746–1753

    Article  PubMed  Google Scholar 

  13. Nael K, Ruehm SG, Michaely HJ et al (2007) Multistation whole-body high-spatial-resolution MR angiography using a 32-channel MR system. AJR 188(2):529–539

    Article  PubMed  Google Scholar 

  14. Berg F, Bangard C, Bovenschulte H et al (2008) Feasibility of peripheral contrast-enhanced magnetic resonance angiography at 3.0 Tesla with a hybrid technique: comparison with digital subtraction angiography. Invest Radiol 43(9):642–649

    Article  PubMed  Google Scholar 

  15. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130(6):461–470

    PubMed  CAS  Google Scholar 

  16. Altman DG (2000) Diagnostic tests. In: Altman DG, Machin D, Bryant TN, Gardner MJ (eds) Statistics with confidence. Blackwell BMJ Books, Oxford, pp 105–119

    Google Scholar 

  17. Rasmus M, Bremerich J, Egelhof T et al (2008) Total-body contrast-enhanced MRA on a short, wide-bore 1.5-T system: intra-individual comparison of Gd-BOPTA and Gd-DOTA. Eur Radiol 18(10):2265–2273

    Article  PubMed  CAS  Google Scholar 

  18. Goyen M, Herborn CU, Vogt FM et al (2003) Using a 1 M Gd-chelate (gadobutrol) for total-body three-dimensional MR angiography: preliminary experience. J Magn Reson Imaging 17(5):565–571

    Article  PubMed  Google Scholar 

  19. Nikolaou K, Kramer H, Grosse C et al (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241(3):861–872

    Article  PubMed  Google Scholar 

  20. Habibi R, Krishnam MS, Lohan DG et al (2008) High-spatial-resolution lower extremity MR angiography at 30 T: contrast agent dose comparison study. Radiology 248(2):680–692

    Article  PubMed  Google Scholar 

  21. Lohan DG, Tomasian A, Krishnam M et al (2008) MR angiography of lower extremities at 3 T: presurgical planning of fibular free flap transfer for facial reconstruction. AJR 190(3):770–776

    Article  PubMed  Google Scholar 

  22. Lapeyre M, Kobeiter H, Desgranges P et al (2005) Assessment of critical limb ischemia in patients with diabetes: comparison of MR angiography and digital subtraction angiography. AJR 185(6):1641–1650

    Article  PubMed  Google Scholar 

  23. Morasch MD, Collins J, Pereles FS et al (2003) Lower extremity stepping-table magnetic resonance angiography with multilevel contrast timing and segmented contrast infusion. J Vasc Surg 37(1):62–71

    Article  PubMed  Google Scholar 

  24. Herborn CU, Vogt FM, Waltering KU et al (2004) Optimization of contrast-enhanced peripheral MR angiography with mid-femoral venous compression (VENCO). Rofo 176(2):157–162

    PubMed  CAS  Google Scholar 

  25. Alexandrova NA, Gibson WC, Norris JW et al (1996) Carotid artery stenosis in peripheral vascular disease. J Vasc Surg 23(4):645–649

    Article  PubMed  CAS  Google Scholar 

  26. Drouet L (2002) Atherothrombosis as a systemic disease. Cerebrovasc Dis 13(Suppl 1):1–6

    Article  PubMed  Google Scholar 

  27. Wachtell K, Ibsen H, Olsen MH et al (1996) Prevalence of renal artery stenosis in patients with peripheral vascular disease and hypertension. J Hum Hypertens 10(2):83–85

    PubMed  CAS  Google Scholar 

  28. Prince MR, Chabra SG, Watts R et al (2002) Contrast material travel times in patients undergoing peripheral MR angiography. Radiology 224(1):55–61

    Article  PubMed  Google Scholar 

  29. Eiberg JP, Madycki G, Hansen MA et al (2002) Ultrasound imaging of infrainguinal arterial disease has a high interobserver agreement. Eur J Vasc Endovasc Surg 24(4):293–299

    Article  PubMed  CAS  Google Scholar 

  30. Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316(22):1371–1375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef W. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, Y.W., Eiberg, J.P., Logager, V.B. et al. Whole-Body Magnetic Resonance Angiography at 3 Tesla Using a Hybrid Protocol in Patients with Peripheral Arterial Disease. Cardiovasc Intervent Radiol 32, 877–886 (2009). https://doi.org/10.1007/s00270-009-9549-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-009-9549-z

Keywords

Navigation