Skip to main content
Log in

Portal Vein Embolization with Radiolabeled Polyvinyl Alcohol Particles in a Swine Model: Hepatic Distribution and Implications for Pancreatic Islet Cell Transplantation

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The distribution of radiolabeled polyvinyl alcohol microspheres (PVAMs) when infused into the portal vein of domestic swine was investigated, with the purpose of assessing implications for pancreatic islet cell transplantation. PVAMs measuring 100–300 μm (Contour SE) and labeled with 99mTc were infused into the main portal vein of 12 swine, with intermittent portal venous pressure measurements. The infusion catheter was introduced antegradely via direct or indirect cannulation of the portal vein. The liver was subsequently divided into anatomical segments. Radioactivity (decay corrected) was measured for 99mTc microsphere synthesis, dose preparation, gross organ activities, tissue samples, and blood. Particulate labeling, catheter positioning, and infusion were successful in all cases. The number of particles used was (185,000 ± 24,000) with a volume of 1 ml. Mean portal pressure at 5 min was significantly higher than baseline, but without a significant difference at 15 min. Extrahepatic tissue and serum radioactivity was negligible. A significant difference in number of radioactive particles per gram was detected between segments 6/7 and segments 5/8. Intrasegmental activity was analyzed, and for segments 2/3 a significant difference in the percentage dose per gram across samples was demonstrated (P = 0.001). Effective and stable radiolabeling of PVAMs with 99mTc-sulfur colloid was demonstrated. Portal venous infusion of 100- to 300-μm particles showed entrapment in the sinusoidal hepatic system with transient portal pressure elevation. Preferential embolization into the right lateral and posterior segments occurs, suggesting that flow dynamics/catheter tip position plays a role in particle distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ryan EA, Lakey JR, Paty BW et al (2002) Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 51:2148–2157

    Article  PubMed  CAS  Google Scholar 

  2. Casey JJ, Lakey JR, Ryan EA et al (2002) Portal venous pressure changes after sequential clinical islet transplantation. Transplantation 74:913–915

    Article  PubMed  CAS  Google Scholar 

  3. Ryan EA, Lakey JR, Rajotte RV et al (2001) Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50:710–719

    Article  PubMed  CAS  Google Scholar 

  4. Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  PubMed  CAS  Google Scholar 

  5. Villiger P, Ryan EA, Owen R et al (2005) Prevention of bleeding after islet transplantation: lessons learned from a multivariate analysis of 132 cases at a single institution. Am J Transpl 5(12):2992–2998

    Article  CAS  Google Scholar 

  6. Abdalla EK, Hicks ME, Vauthey JN (2001) Portal vein embolization: rationale, technique and future prospects. Br J Surg 88:165–175

    Article  PubMed  CAS  Google Scholar 

  7. Walsh TJ, Eggleston JC, Cameron JL (1982) Portal hypertension, hepatic infarction, and liver failure complicating pancreatic islet autotransplantation. Surgery 91:485–487

    PubMed  CAS  Google Scholar 

  8. White SA, London NJ, Johnson PR et al (2000) The risks of total pancreatectomy and splenic islet autotransplantation. Cell Transplant 9:19–24

    PubMed  CAS  Google Scholar 

  9. Shapiro AM, Lakey JR, Rajotte RV et al (1995) Portal vein thrombosis after transplantation of partially purified pancreatic islets in a combined human liver/islet allograft. Transplantation 59:1060–1063

    Article  PubMed  CAS  Google Scholar 

  10. Owen RJ, Ryan EA, O’Kelly K et al (2003) Percutaneous transhepatic pancreatic islet cell transplantation in type 1 diabetes mellitus: radiologic aspects. Radiology 229:165–170

    Article  PubMed  Google Scholar 

  11. Bhargava R, Senior PA, Ackerman TE et al (2004) Prevalence of hepatic steatosis after islet transplantation and its relation to graft function. Diabetes 53:1311–1317

    Article  PubMed  CAS  Google Scholar 

  12. Hirshberg B, Mog S, Patterson N et al (2002) Histopathological study of intrahepatic islets transplanted in the nonhuman primate model using edmonton protocol immunosuppression. J Clin Endocrinol Metab 87:5424–5429

    Article  PubMed  CAS  Google Scholar 

  13. Markmann JF, Rosen M, Siegelman ES et al (2003) Magnetic resonance-defined periportal steatosis following intraportal islet transplantation: A functional footprint of islet graft survival? Diabetes 52:1591–1594

    Article  PubMed  CAS  Google Scholar 

  14. Shibayama Y, Hashimoto K, Nakata K (1992) Hepatic haemodynamics and microvascular architecture after portal venular embolization in the rat. J Hepatol 14:94–98

    Article  PubMed  CAS  Google Scholar 

  15. Murthy R, Habbul A, Salem R (2006) Trans-arterial hepatic radioembolisation of yttrium-90 microspheres. Biomed Imaging Interv J 2:e43–e48

    Article  Google Scholar 

  16. Souza F, Freeby M, Hultman K et al (2006) Current progress in non-invasive imaging of beta cell mass of the endocrine pancreas. Curr Med Chem 13:2761–2773

    Article  PubMed  CAS  Google Scholar 

  17. Evgenov NV, Medarova Z, Dai G et al (2006) In vivo imaging of islet transplantation. Nat Med 12:144–148

    Article  PubMed  CAS  Google Scholar 

  18. Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55:2931–2938

    Article  PubMed  CAS  Google Scholar 

  19. Laurent A, Velzenberger E, Wassef M, Pelage JP, Lewis AL (2008) Do microspheres with narrow or standard size distributions localize differently in vasculature? An experimental study in sheep kidney and uterus. J Vasc Interv Radiol (in press)

  20. Khankan AA, Osuga K, Hori S et al (2004) Embolic effects of superabsorbent polymer microspheres in rabbit renal model: comparison with tris-acryl gelatin microspheres and polyvinyl alcohol. Radiat Med 22:384–390

    PubMed  Google Scholar 

  21. Jack CR Jr, Dewanjee MK, Brown ML et al (1986) Radiolabeled polyvinyl alcohol particles: a potential agent to monitor embolization procedures. Int J Rad Appl Instrum B 13(3):235–243

    PubMed  Google Scholar 

  22. Siskin GP, Dowling K, Virmani R et al (2003) Pathological evaluation of a spherical polyvinyl alcohol embolic agent in a porcine renal model. J Vasc Interv Radiol 14:89–98

    PubMed  Google Scholar 

  23. Lembert N, Wesche J, Petersen P et al (2003) Area density is a convenient method for the determination of porcine islet equivalents without counting and sizing individual islets. Cell Transpl 12(1):33–41

    Article  CAS  Google Scholar 

  24. Filipponi F, Leoncini G, Campatelli A et al (1995) Segmental organization of the pig liver: anatomical basis of controlled partition for experimental grafting. Eur Surg Res 27:151–157

    Article  PubMed  CAS  Google Scholar 

  25. Burgener FA, Gutierrez OH, Logsdon GA (1982) Angiographic, hemodynamic, and histologic evaluation of portal hypertension and periportal fibrosis induced in the dog by intraportal polyvinyl alcohol injections. Radiology 143:379–385

    PubMed  CAS  Google Scholar 

  26. Palmaz JC, Garcia F, Sibbitt RR et al (1986) Expandable intrahepatic portacaval shunt stents in dogs with chronic portal hypertension. AJR 147(6):1251–1254

    PubMed  CAS  Google Scholar 

  27. Pavcnik D, Saxon RR, Kubota Y et al (1997) Attempted induction of chronic portal venous hypertension with polyvinyl alcohol particles in swine. J Vasc Interv Radiol 8:123–128

    Article  PubMed  CAS  Google Scholar 

  28. Grant EG, Schiller VL, Millener P et al (1992) Color Doppler imaging of the hepatic vasculature. AJR 159:943–950

    PubMed  CAS  Google Scholar 

  29. Rosenthal SJ, Harrison LA, Baxter KG et al (1995) Doppler US of helical flow in the portal vein. Radiographics 15:1103–1111

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from CHAR (Canadian Heads of Academic Radiology) and from the University of Alberta, Faculty of Medicine. The authors thank Tracey Clare, Christine Cook, and Shannon Erichsen for their invaluable assistance in this project. We are also grateful for the assistance of engineers and sales representatives of Boston Scientific Ltd. in supplying the samples and data on the Contour SE microspheres. The study was carried out in the animal labs of the Surgical-Medical Research Institute, University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Owen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, R.J., Mercer, J.R., Al-Saif, F. et al. Portal Vein Embolization with Radiolabeled Polyvinyl Alcohol Particles in a Swine Model: Hepatic Distribution and Implications for Pancreatic Islet Cell Transplantation. Cardiovasc Intervent Radiol 32, 499–507 (2009). https://doi.org/10.1007/s00270-009-9544-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-009-9544-4

Keywords

Navigation