Advertisement

CardioVascular and Interventional Radiology

, Volume 31, Issue 5, pp 971–980 | Cite as

Restenosis of the CYPHER-Select, TAXUS-Express, and Polyzene-F Nanocoated Cobalt-Chromium Stents in the Minipig Coronary Artery Model

  • Boris Radeleff
  • Heidi Thierjung
  • Ulrike Stampfl
  • Sibylle Stampfl
  • Ruben Lopez-Benitez
  • Christof Sommer
  • Irina Berger
  • Goetz M. Richter
Laboratory Investigation

Abstract

Purpose

To date no direct experimental comparison between the CYPHER-Select and TAXUS-Express stents is available. Therefore, we investigated late in-stent stenosis, thrombogenicity, and inflammation, comparing the CYPHER-Select, TAXUS-Express, and custom-made cobalt chromium Polyzene-F nanocoated stents (CCPS) in the minipig coronary artery model.

Methods

The three stent types were implanted in the right coronary artery of 30 minipigs. The primary endpoint was in-stent stenosis assessed by quantitative angiography and microscopy. Secondary endpoints were inflammation and thrombogenicity evaluated by scores for inflammation and immunoreactivity (C-reactive protein and transforming growth factor beta). Follow-up was at 4 and 12 weeks.

Results

Stent placement was successful in all animals; no thrombus deposition occurred. Quantitative angiography did not depict statistically significant differences between the three stent types after 4 and 12 weeks. Quantitative microscopy at 4 weeks showed a statistically significant thicker neointima (p = 0.0431) for the CYPHER (105.034 ± 62.52 μm) versus the TAXUS (74.864 ± 66.03 μm) and versus the CCPS (63.542 ± 39.57 μm). At 12 weeks there were no statistically significant differences. Inflammation scores at 4 weeks were significantly lower for the CCPS and CYPHER compared with the TAXUS stent (p = 0.0431). After 12 weeks statistical significance was only found for the CYPHER versus the TAXUS stent (p = 0.0431). The semiquantitative immunoreactivity scores for C-reactive protein and transforming growth factor beta showed no statistically significant differences between the three stent types after 4 and 12 weeks.

Conclusions

The CCPS provided effective control of late in-stent stenosis and thrombogenicity in this porcine model compared with the two drug-eluting stents. Its low inflammation score underscores its noninflammatory potential and might explain its equivalence to the two DES.

Keywords

Drug-eluting stent Inflammation Polyzene-F Restenosis 

Notes

Acknowledgments

Funding sources. This study was sponsored in part by CeloNova BioSciences., Inc. Newnan, GA, USA.

Financial disclosures. U.S., R.L.-B, and G.M.R. have sponsored research agreements with CeloNova BioSciences, Inc., Newnan, GA, USA. G.M.R. has served as consultant to CeloNova BioSciences, Inc., Newnan, GA, USA.

References

  1. 1.
    Moliterno DJ (2005) Healing Achilles: Sirolimus versus paclitaxel. N Engl J Med 353:724–727PubMedCrossRefGoogle Scholar
  2. 2.
    Farb A, Boam AB (2007) Stent thrombosis redux: The FDA perspective. N Engl J Med 356:984–987PubMedCrossRefGoogle Scholar
  3. 3.
    Camenzind E, Steg PG, Wijns W (2007) Stent thrombosis late after implantation of first-generation drug-eluting stents: A cause for concern. Circulation 115:1440–1455PubMedCrossRefGoogle Scholar
  4. 4.
    Maisel WH (2007) Unanswered questions: Drug-eluting stents and the risk of late thrombosis. N Engl J Med 356:981–984PubMedCrossRefGoogle Scholar
  5. 5.
    Virmani R, Liistro F, Stankovic G, et al. (2002) Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation 106:2649–2651PubMedCrossRefGoogle Scholar
  6. 6.
    Tur DR, Korshak VV, Vinogradova SV, et al. (1986) Effects of biological medium on the properties of poly[bis(trifluoroethoxy)phosphazene]. Acta Polym 37:203–208CrossRefGoogle Scholar
  7. 7.
    Vinogradova SV, Tur DR, Vasnev VA (1998) Open-chain poly(organophosphazenes). Synthesis and properties. Russian Chem Rev 67:515–534CrossRefGoogle Scholar
  8. 8.
    Welle A, Grunze M, Tur D (1998) Plasma protein adsorption and platelet adhesion on poly[bis(trifluoroethoxy)phosphazene] and reference material surfaces. J Colloid Interface Sci 197:263–274PubMedCrossRefGoogle Scholar
  9. 9.
    Richter GM, Stampfl U, Stampfl S, et al. (2005) A new polymer concept for coating of vascular stents using PTFEP (poly(bis(trifluoroethoxy)phosphazene) to reduce thrombogenicity and late in-stent stenosis. Invest Radiol 40:210–218PubMedCrossRefGoogle Scholar
  10. 10.
    Satzl S, Henn C, Christoph P, et al. (2007) The efficacy of nanoscale poly[bis(trifluoroethoxy) phosphazene] (PTFEP) coatings in reducing thrombogenicity and late in-stent stenosis in a porcine coronary artery model. Invest Radiol 42:303–311PubMedCrossRefGoogle Scholar
  11. 11.
    Bayne K (1998) Developing guidelines on the care and use of animals. Ann N Y Acad Sci 862:105–110PubMedCrossRefGoogle Scholar
  12. 12.
    Schwartz RS, Edelman ER, Carter A, et al. (2002) Drug-eluting stents in preclinical studies: Recommended evaluation from a consensus group. Circulation 106:1867–1873PubMedCrossRefGoogle Scholar
  13. 13.
    Schwartz RS, Huber KC, Murphy JG, et al. (1992) Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model. J Am Coll Cardiol 19:267–274PubMedCrossRefGoogle Scholar
  14. 14.
    Kornowski R, Hong MK, Tio FO, et al. (1998) In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 31:224–230PubMedCrossRefGoogle Scholar
  15. 15.
    Finis K, Sultmann H, Ruschhaupt M, et al. (2006) Analysis of pigmented villonodular synovitis with genome-wide complementary DNA microarray and tissue array technology reveals insight into potential novel therapeutic approaches. Arthritis Rheum 54:1009–1019PubMedCrossRefGoogle Scholar
  16. 16.
    Hong MK, Kornowski R, Bramwell O, et al. (2001) Paclitaxel-coated Gianturco-Roubin II (GR II) stents reduce neointimal hyperplasia in a porcine coronary in-stent restenosis model. Coron Artery Dis 12:513–515PubMedCrossRefGoogle Scholar
  17. 17.
    Drachman DE, Edelman ER, Seifert P, et al. (2000) Neointimal thickening after stent delivery of paclitaxel: Change in composition and arrest of growth over six months. J Am Coll Cardiol 36:2325–2332PubMedCrossRefGoogle Scholar
  18. 18.
    Suzuki T, Kopia G, Hayashi S, et al. (2001) Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 104:1188–1193PubMedCrossRefGoogle Scholar
  19. 19.
    Carter AJ, Aggarwal M, Kopia GA, et al. (2004) Long-term effects of polymer-based, slow-release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc Res 63:617–624PubMedCrossRefGoogle Scholar
  20. 20.
    Farb A, Heller PF, Shroff S, et al. (2001) Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation 104:473–479PubMedCrossRefGoogle Scholar
  21. 21.
    Finn AV, Kolodgie FD, Harnek J, et al. (2005) Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation 112:270–278PubMedCrossRefGoogle Scholar
  22. 22.
    Heldman AW, Cheng L, Jenkins GM, et al. (2001) Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 103:2289–2295PubMedGoogle Scholar
  23. 23.
    Gaspardone A, Versaci F, Tomai F, et al. (2006) C-Reactive protein, clinical outcome, and restenosis rates after implantation of different drug-eluting stents. Am J Cardiol 97:1311–1316PubMedCrossRefGoogle Scholar
  24. 24.
    Chamberlain J, Gunn J, Francis SE, et al. (2001) TGFbeta is active, and correlates with activators of TGFbeta, following porcine coronary angioplasty. Cardiovasc Res 50:125–136PubMedCrossRefGoogle Scholar
  25. 25.
    Lagerqvist B, James SK, Stenestrand U, et al. (2007) Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N Engl J Med 356:1009–1019PubMedCrossRefGoogle Scholar
  26. 26.
    Luscher TF, Steffel J, Eberli FR, et al. (2007) Drug-eluting stent and coronary thrombosis: Biological mechanisms and clinical implications. Circulation 115:1051–1058PubMedCrossRefGoogle Scholar
  27. 27.
    Virmani R, Guagliumi G, Farb A, et al. (2004) Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: Should we be cautious? Circulation 109:701–705PubMedCrossRefGoogle Scholar
  28. 28.
    Richter GM, Palmaz JC, Noeldge G, et al. (1999) Relationship between blood flow, thrombus, and neointima in stents. J Vasc Interv Radiol 10:598–604PubMedCrossRefGoogle Scholar
  29. 29.
    Virmani R, Kolodgie FD, Farb A, et al. (2003) Drug eluting stents: are human and animal studies comparable? Heart 89:133–138PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Boris Radeleff
    • 1
  • Heidi Thierjung
    • 1
  • Ulrike Stampfl
    • 1
  • Sibylle Stampfl
    • 1
  • Ruben Lopez-Benitez
    • 1
  • Christof Sommer
    • 1
  • Irina Berger
    • 2
  • Goetz M. Richter
    • 1
  1. 1.Department of RadiologyUniversity HeidelbergHeidelbergGermany
  2. 2.Department of PathologyUniversity HeidelbergHeidelbergGermany

Personalised recommendations