Skip to main content

Advertisement

Log in

Porcine Transfer Study: Virtual Reality Simulator Training Compared with Porcine Training in Endovascular Novices

  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the learning of endovascular interventional skills by training on pig models versus virtual reality simulators.

Methods

Twelve endovascular novices participated in a study consisting of a pig laboratory (P-Lab) and a virtual reality laboratory (VR-Lab). Subjects were stratified by experience and randomized into four training groups. Following 1 hr of didactic instruction, all attempted an iliac artery stenosis (IAS) revascularization in both laboratories. Onsite proctors evaluated performances using task-specific checklists and global rating scales, yielding a Total Score. Participants completed two training sessions of 3 hr each, using their group’s assigned method (P-Lab × 2, P-Lab + VR-Lab, VR-Lab + P-Lab, or VR-Lab × 2) and were re-evaluated in both laboratories. A panel of two highly experienced interventional radiologists performed assessments from video recordings. ANCOVA analysis of Total Score against years of surgical, interventional radiology (IR) experience and cumulative number of P-Lab or VR-Lab sessions was conducted. Inter-rater reliability (IRR) was determined by comparing proctored scores with the video assessors in only the VR-Lab.

Results

VR-Lab sessions improved the VR-Lab Total Score (β = 3.029, p = 0.0015) and P-Lab Total Score (β = 1.814, p = 0.0452). P-Lab sessions increased the P-Lab Total Score (β = 4.074, p < 0.0001) but had no effect on the VR-Lab Total Score. In the general statistical model, both P-Lab sessions (β = 2.552, p = 0.0010) and VR-Lab sessions (β = 2.435, p = 0.0032) significantly improved Total Score. Neither previous surgical experience nor IR experience predicted Total Score. VR-Lab scores were consistently higher than the P-Lab scores (Δ = 6.659, p < 0.0001). VR-Lab IRR was substantial (r = 0.649, p < 0.0008).

Conclusions

Endovascular skills learned in the virtual environment may be transferable to the real catheterization laboratory as modeled in the P-Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Ahlberg G, Hultcrantz R, Jaramillo E, Lindblom A, Arvidsson D (2005) Virtual reality colonoscopy simulation: A compulsory practice for the future colonoscopist? Endoscopy 37:1198–1204

    Article  PubMed  CAS  Google Scholar 

  2. Lin PH, Bush RL, Peden EK, et al. (2005) Carotid artery stenting with neuroprotection: Assessing the learning curve and treatment outcome. Am J Surg 190:850–857

    Article  PubMed  Google Scholar 

  3. Piechaud PT, Pansadoro A (2006) Transfer of skills from the experimental model to the patients. Curr Urol Rep 7:96–99

    PubMed  Google Scholar 

  4. Eversbusch A, Grantcharov TP (2004) Learning curves and impact of psychomotor training on performance in simulated colonoscopy: A randomized trial using a virtual reality endoscopy trainer. Surg Endosc 18:1514–1518

    Article  PubMed  CAS  Google Scholar 

  5. Gallagher AG, Lederman AB, McGlade K, Satava RM, Smith CD (2004) Discriminative validity of the Minimally Invasive Surgical Trainer in Virtual Reality (MIST-VR) using criteria levels based on expert performance. Surg Endosc 18:660–665

    Article  PubMed  CAS  Google Scholar 

  6. Gallagher AG, Satava RM (2002) Virtual reality as a metric for the assessment of laparoscopic psychomotor skills: Learning curves and reliability measures. Surg Endosc 16:1746–1752

    Article  PubMed  CAS  Google Scholar 

  7. Cosman PH, Cregan PC, Martin CJ, Cartmill JA (2002) Virtual reality simulators: Current status in acquisition and assessment of surgical skills. Aust N Z J Surg 72:30–34

    Article  Google Scholar 

  8. Gallagher AG, Richie K, McClure N, McGuigan J (2001) Objective psychomotor skills assessment of experienced, junior, and novice laparoscopists with virtual reality. World J Surg 25:1478–1483

    Article  PubMed  CAS  Google Scholar 

  9. Martin JA, Regehr G, Reznick R, et al. (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84:273–278

    Article  PubMed  CAS  Google Scholar 

  10. Madan AK, Frantzides CT, Sasso LM (2005) Laparoscopic baseline ability assessment by virtual reality. J Laparoendosc Adv Surg Tech A 15:13–17

    Article  PubMed  Google Scholar 

  11. Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P (2004) Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg 91:146–150

    Article  PubMed  CAS  Google Scholar 

  12. Faulkner H, Regehr G, Martin J, Reznick R (1996) Validation of an objective structured assessment of technical skill for surgical residents. Acad Med 71:1363–1365

    Article  PubMed  CAS  Google Scholar 

  13. Beard JD, Jolly BC, Newble DI, Thomas WE, Donnelly J, Southgate LJ (2005) Assessing the technical skills of surgical trainees. Br J Surg 92:778–782

    Article  PubMed  CAS  Google Scholar 

  14. Reznick R, Regehr G, MacRae H, Martin J, McCulloch W (1997) Testing technical skill via an innovative “bench station” examination. Am J Surg 173:226–230

    Article  PubMed  CAS  Google Scholar 

  15. MacRae H, Regehr G, Leadbetter W, Reznick RK (2000) A comprehensive examination for senior surgical residents. Am J Surg 179:190–193

    Article  PubMed  CAS  Google Scholar 

  16. Regehr G, MacRae H, Reznick RK, Szalay D (1998) Comparing the psychometric properties of checklists and global rating scales for assessing performance on an OSCE-format examination. Acad Med 73:993–997

    Article  PubMed  CAS  Google Scholar 

  17. Lehmann KS, Ritz JP, Maass H, et al. (2005) A prospective randomized study to test the transfer of basic psychomotor skills from virtual reality to physical reality in a comparable training setting. Ann Surg 241:442–449

    Article  PubMed  Google Scholar 

  18. Rotnes JS, Kaasa J, Westgaard G, et al. (2002) A tutorial platform suitable for surgical simulator training (SimMentor). Stud Health Technol Inform 85:419–425

    PubMed  Google Scholar 

  19. Strom P, Kjellin A, Hedman L, Wredmark T, Fellander-Tsai L (2004) Training in tasks with different visual-spatial components does not improve virtual arthroscopy performance. Surg Endosc 18:115–120

    Article  PubMed  CAS  Google Scholar 

  20. Di Lorenzo NDJ (2005) Surgical training and simulations. Business briefing: Global surgery—future directions

    Google Scholar 

  21. Hyltander A, Liljegren E, Rhodin PH, Lonroth H (2002) The transfer of basic skills learned in a laparoscopic simulator to the operating room. Surg Endosc 16:1324–1328

    Article  PubMed  CAS  Google Scholar 

  22. Gallagher AG, Ritter EM, Satava RM (2003) Fundamental principles of validation, and reliability: Rigorous science for the assessment of surgical education and training. Surg Endosc 17:1525–1529

    Article  PubMed  CAS  Google Scholar 

  23. Gould DA, Reekers JA, Kessel DO, et al. (2006) Simulation devices in interventional radiology: Caveat emptor. Cardiovasc Intervent Radiol 29:4–6

    Article  PubMed  Google Scholar 

  24. Torkington J, Smith SG, Rees BI, Darzi A (2001) Skill transfer from virtual reality to a real laparoscopic task. Surg Endosc 15:1076–1079

    Article  PubMed  CAS  Google Scholar 

  25. Ahlberg G, Heikkinen T, Iselius L, Leijonmarck CE, Rutqvist J, Arvidsson D (2002) Does training in a virtual reality simulator improve surgical performance? Surg Endosc 16:126–129

    Article  PubMed  CAS  Google Scholar 

  26. Youngblood PL, Srivastava S, Curet M, Heinrichs WL, Dev P, Wren SM (2005) Comparison of training on two laparoscopic simulators and assessment of skills transfer to surgical performance. J Am Coll Surg 200:546–551

    Article  PubMed  Google Scholar 

  27. Schijven MP, Jakimowicz JJ, Broeders IA, Tseng LN (2005) The Eindhoven laparoscopic cholecystectomy training course. Improving operating room performance using virtual reality training: results from the first EAES accredited virtual reality trainings curriculum. Surg Endosc 19:1220–1226

    Article  PubMed  CAS  Google Scholar 

  28. Berry M, Lystig T, Reznick R, Lonn L (2006) Assessment of a virtual interventional simulator trainer. J Endovasc Ther 13:237–243

    Article  PubMed  Google Scholar 

  29. Anon (2005) R: A language and environment for statistical computing [program]. Vienna, Austria

  30. Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986:121–130

    Article  Google Scholar 

  31. Grantcharov TP, Rosenberg J, Pahle E, Funch-Jensen P (2001) Virtual reality computer simulation. Surg Endosc 15:242–244

    Article  PubMed  CAS  Google Scholar 

  32. Hamilton EC, Scott DJ, Fleming JB, et al. (2002) Comparison of video trainer and virtual reality training systems on acquisition of laparoscopic skills. Surg Endosc 16:406–411

    Article  PubMed  CAS  Google Scholar 

  33. Aggarwal R, Black SA, Hance JR, Darzi A, Cheshire NJ (2005) Virtual reality simulation training can improve inexperienced surgeons’ endovascular skills. Eur J Vasc Endovasc Surg 31(6):588–593

    Article  Google Scholar 

  34. Szalay D, MacRae H, Regehr G, Reznick R (2000) Using operative outcome to assess technical skill. Am J Surg 180:234–237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Berry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, M., Lystig, T., Beard, J. et al. Porcine Transfer Study: Virtual Reality Simulator Training Compared with Porcine Training in Endovascular Novices. Cardiovasc Intervent Radiol 30, 455–461 (2007). https://doi.org/10.1007/s00270-006-0161-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-006-0161-1

Keywords

Navigation