Skip to main content

Advertisement

Log in

The Road to Bioabsorbable Stents: Reaching Clinical Reality?

  • REVIEW ARTICLE
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

This article provides an overview of the evolution of revascularization devices since Grüntzig’s initial introduction of balloon angioplasty in 1977. In-stent restenosis (ISR) is the major shortcoming of conventional (permanent-implant) stent therapy; even with the innovation and promising benefits of drug-eluting stents, management of ISR is very difficult. ISR is mainly caused by the interaction between the blood and the stent surface and a permanent mechanical irritation of the vascular tissue. Thus stenting technology has moved toward the development of temporary implants composed of biocompatible materials which mechanically support the vessel during the period of high risk for recoil and then completely biodegrade in the long term. Preclinical and first clinical experiences with bioabsorbable magnesium stents are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Grüntzig A, Schneider HJ (1977) The percutaneous dilatation of chronic coronary stenoses: Experiments and morphology. Schweiz Med Wochenschr 107:1588

    PubMed  Google Scholar 

  2. Sigwart U, Puel J, Mirkovitch V, et al (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316:701–706

    CAS  PubMed  Google Scholar 

  3. Hall P, Nakamura S, Maiello L, et al (1996) A randomized comparison of combined ticlopidine and aspirin therapy versus aspirin therapy alone after successful intravascular ultrasound-guided stent implantation. Circulation 93:215–222

    CAS  PubMed  Google Scholar 

  4. Colombo A, Hall P, Nakamura S, et al (1995) Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91:1676–1688

    CAS  PubMed  Google Scholar 

  5. Colombo A, Ferraro M, Itoh A, et al (1996) Results of coronary stenting for restenosis. J Am Coll Cardiol 28:830–836

    Article  CAS  PubMed  Google Scholar 

  6. Mehran R, Dangas G, Abizaid AS, et al (1999) Angiographic patterns of in-stent restenosis: Classification and implications for long-term outcome. Circulation 100:1872–1878

    CAS  PubMed  Google Scholar 

  7. Spanos V, Stankovic G, Tobis J, et al (2003) The challenge of in-stent restenosis: Insights from intravascular ultrasound. Eur Heart J 24:138–150

    CAS  PubMed  Google Scholar 

  8. Bennett MR (2003) In-stent stenosis: Pathology and implications for the development of drug eluting stents. Heart 89:218–224

    Article  PubMed  Google Scholar 

  9. Rajagopal V, Rockson SG (2003) Coronary restenosis: A review of mechanisms and management. Am J Med 115:547–553

    Article  PubMed  Google Scholar 

  10. Apisarnthanarax S, Chougule P (2003) Intravascular brachytherapy: A review of the current vascular biology. Am J Clin Oncol 26:e13–21

    Article  PubMed  Google Scholar 

  11. Indolfi C, Mongiardo A, Curcio A, et al (2003) Molecular mechanisms of in-stent restenosis and approach to therapy with eluting stents. Trends Cardiovasc Med 13:142–148

    Article  CAS  PubMed  Google Scholar 

  12. Mintz GS, Popma JJ, Pichard AD, et al (1996) Arterial remodeling after coronary angioplasty: A serial intravascular ultrasound study. Circulation 94:35–43

    CAS  PubMed  Google Scholar 

  13. Hoffmann R, Mintz GS, Dussaillant GR, et al (1996) Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 94:1247–1254

    CAS  PubMed  Google Scholar 

  14. Nakamura S, Colombo A, Gaglione A, et al (1994) Intracoronary ultrasound observations during stent implantation. Circulation 89:2026–2034

    CAS  PubMed  Google Scholar 

  15. Virmani R, Farb A (1999) Pathology of in-stent restenosis. Curr Opin Lipidol 10:499–506

    Article  CAS  PubMed  Google Scholar 

  16. Grewe PH, Deneke T, Machraoui A, et al (2000) Acute and chronic tissue response to coronary stent implantation: Pathologic findings in human specimen. J Am Coll Cardiol 35:157–163

    Article  CAS  PubMed  Google Scholar 

  17. Regar E, Sianos G, Serruys PW (2001) Stent development and local drug delivery. Br Med Bull 59:227–248

    CAS  PubMed  Google Scholar 

  18. Condado JA, Waksman R, Gurdiel O, et al (1997) Long-term angiographic and clinical outcome after percutaneous transluminal coronary angioplasty and intracoronary radiation therapy in humans. Circulation 96:727–732

    CAS  PubMed  Google Scholar 

  19. Waksman R, Bhargava B, Chan RC, et al (2001) Intracoronary radiation with gamma wire inhibits recurrent in-stent restenosis. Cardiovasc Radiat Med 2:63–68

    CAS  PubMed  Google Scholar 

  20. Teirstein PS, Massullo V, Jani S, et al (1997) Catheter-based radiotherapy to inhibit restenosis after coronary stenting. N Engl J Med 336:1697–1703

    Article  CAS  PubMed  Google Scholar 

  21. Saia F, Lemos PA, Hoye A, et al (2004) Clinical outcomes for sirolimus-eluting stent implantation and vascular brachytherapy for the treatment of in-stent restenosis. Catheter Cardiovasc Interv 62:283–288

    PubMed  Google Scholar 

  22. Costa MA, Sabat M, van der Giessen WJ, et al (1999) Late coronary occlusion after intracoronary brachytherapy. Circulation 100:789–792

    CAS  PubMed  Google Scholar 

  23. Waksman R (1999) Late thrombosis after radiation. Sitting on a time bomb. Circulation 100:780–782

    CAS  PubMed  Google Scholar 

  24. Doriot PA, Dorsaz PA, Verin V (2003) A morphological-mechanical explanation of edge restenosis in lesions treated with vascular brachytherapy. Cardiovasc Radiat Med 4:108–115

    Article  PubMed  Google Scholar 

  25. Serruys PW, van Hout B, Bonnier H, et al (1998) Randomised comparison of implantation of heparin-coated stents with balloon angioplasty in selected patients with coronary artery disease (Benestent II). Lancet 352:673–681

    Article  CAS  PubMed  Google Scholar 

  26. Lowe HC, Oesterle SN, Khachigian LM (2002) Coronary in-stent restenosis: Current status and future strategies. J Am Coll Cardiol 39:183–193

    Article  PubMed  Google Scholar 

  27. Beyar R (2004) Novel approaches to reduce restenosis. Ann N Y Acad Sci 1015:367–378

    Article  PubMed  Google Scholar 

  28. Ong AT, Aoki J, McFadden EP, et al (2004) Classification and current treatment options of in-stent restenosis. Present status and future perspectives. Herz 29:187–194

    Article  PubMed  Google Scholar 

  29. Woods TC, Marks AR (2004) Drug-eluting stents. Annu Rev Med 55:169–178

    Article  CAS  PubMed  Google Scholar 

  30. Duda SH, Pusich B, Richter G, et al. (2002) Sirolimus-eluting stents for the treatment of obstructive superficial femoral arte\rventions in iliac and infrainguinal occlusive artery disease. J Interv Cardiol 17:427–435

    Google Scholar 

  31. Ruef J, Hofmann M, Haase J (2004) Endovascular interventions in iliac and infrainguinal occlusive artery disease. J Interv Cardiol 17:427–435

    Article  PubMed  Google Scholar 

  32. Palmaz JC (1997) New advances in endovascular technology. Tex Heart Inst J 24:156–159

    CAS  PubMed  Google Scholar 

  33. Palmaz JC, Bailey S, Marton D, et al (2002) Influence of stent design and material composition on procedure outcome. J Vasc Surg 36:1031–1039

    Article  PubMed  Google Scholar 

  34. Zidar J, Lincoff A, Stack R (1994) Biodegradable stents. In: Topol EJ (ed) Textbook of interventional cardiology, 2nd edn. Saunders, Philadelphia, pp 787–802

    Google Scholar 

  35. Colombo A, Karvouni E (2000) Biodegradable stents: “Fulfilling the mission and stepping away.” Circulation 102:371–373

    CAS  PubMed  Google Scholar 

  36. Wintermantel E, Mayer J, Ruffieux K, et al (1999) Biomaterials, human tolerance and integration. Chirurgie 70:847–857

    CAS  Google Scholar 

  37. Heublein B, Rohde R, Kaese V, et al (2003) Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart 89:651–656

    Article  CAS  PubMed  Google Scholar 

  38. Stack RS, Califf RM, Phillips HR, et al (1988) Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62:3F–24F

    CAS  PubMed  Google Scholar 

  39. Labinaz M, Zidar JP, Stack RS, et al (1995) Biodegradable stents: The future of interventional cardiology? J Interv Cardiol 8:395–405

    CAS  PubMed  Google Scholar 

  40. Tanguay JF, Zidar JP, Phillips HR, 3rd, et al (1994) Current status of biodegradable stents. Cardiol Clin 12:699–713

    CAS  PubMed  Google Scholar 

  41. van der Giessen WJ, Lincoff AM, Schwartz RS, et al (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697

    PubMed  Google Scholar 

  42. Lincoff AM, Furst JG, Ellis SG, et al (1997) Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol 29:808–816

    CAS  PubMed  Google Scholar 

  43. Tamai H, Igaki K, Kyo E, et al (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404

    CAS  PubMed  Google Scholar 

  44. Yamawaki T, Shimokawa H, Kozai T, et al (1998) Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. J Am Coll Cardiol 32:780–786

    Article  CAS  PubMed  Google Scholar 

  45. Vogt F, Stein A, Rettemeier G, et al (2004) Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur Heart J 25:1330–1340

    Article  CAS  PubMed  Google Scholar 

  46. Peuster M, Wohlsein P, Brugmann M, et al (2001) A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569

    Article  CAS  PubMed  Google Scholar 

  47. Sawyer P, Brattain W, Boddy P (1965) Electrochemical criteria in the choice of materials used in vascular prosthesis. In: Sawyer P (ed) Biophysical mechanism in vascular hemostasis and intravascular thrombosis. Appleton-Century-Crofts, New York, pp 337–348

    Google Scholar 

  48. Ferrando W (1989) Review of corrosion and corrosion control of magnesium alloys and composites. J Mater Eng 11:4

    Google Scholar 

  49. Sarma P, Gambihr S (1995) Therapeutic use of magnesium. Ind J Pharmacol 27:7–13

    Google Scholar 

  50. Vitale JJ (1992) Magnesium deficiency and cardiovascular disease. Lancet 340:1224–1225

    Article  CAS  PubMed  Google Scholar 

  51. Arsenian MA (1993) Magnesium and cardiovascular disease. Prog Cardiovasc Dis 35:271–310

    CAS  PubMed  Google Scholar 

  52. Altura BM, Altura BT (1993) Cardiovascular risk factors and magnesium: Relationships to atherosclerosis, ischemic heart disease and hypertension. Schriftenr Ver Wasser Boden Lufthyg 88:451–473

    CAS  PubMed  Google Scholar 

  53. Keller KB, Lemberg L (1993) The importance of magnesium in cardiovascular disease. Am J Crit Care 2:348–350

    CAS  PubMed  Google Scholar 

  54. Kayser SR, Trujillo T (1994) The role of magnesium in cardiovascular disease. Prog Cardiovasc Nurs 9:37–40

    CAS  PubMed  Google Scholar 

  55. Gomez MN (1998) Magnesium and cardiovascular disease. Anesthesiology 89:222–240

    CAS  PubMed  Google Scholar 

  56. Sthülinger H (2002) Magnesium in cardiovascular disease. J Clin Basic Cardiol 5:55–59

    Google Scholar 

  57. Erne P, Buehler F, Kiowski W (1985) Physiologie des zellulärem Kalziumstoffwechsels. In: Bönner G, Dominiak D (eds) Kalziumantagonisten. Schattauer, Stuttgart, pp 11–37

  58. Erne P, Pletscher A (1985) Vasopressin-induced activation of human blood platelets: Prominent role of Mg2+. Naunyn Schmiedebergs Arch Pharmacol 329:97–99

    CAS  Google Scholar 

  59. Peeters P, Bosiers M, Verbist J, et al. (2005) Preliminary short term results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther 12:1–5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Erne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erne, P., Schier, M. & Resink, T.J. The Road to Bioabsorbable Stents: Reaching Clinical Reality?. Cardiovasc Intervent Radiol 29, 11–16 (2006). https://doi.org/10.1007/s00270-004-0341-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-004-0341-9

Keywords

Navigation