Skip to main content

GeoSoilEnviroCARS (Sector 13) at the Advanced Photon Source: a comprehensive synchrotron radiation facility for Earth science research at ambient and extreme conditions

Abstract

GeoSoilEnviroCARS (GSECARS) is a comprehensive analytical laboratory for Earth and environmental science research using X-ray beams from the Advanced Photon Source, Argonne National Laboratory. State-of-the-art instruments are available for (1) high-pressure/high- or low-temperature diffraction, total scattering, and spectroscopy (Brillouin, Raman, and VIS-IR) using the laser heated diamond anvil cell (DAC); (2) high-pressure/high-temperature diffraction, scattering, and imaging as well as acoustic emission (AE) and ultrasonics using the large-volume press (LVP); (3) powder, single crystal, and surface/interface diffraction; (4) X-ray absorption fine structure spectroscopy; (5) X-ray fluorescence microprobe analysis; and (6) microtomography. Experiments are facilitated by senior level staff who collaborate on all aspects of the analytical work including experiment design, sample preparation, data collection, data interpretation, and publication preparation. Both technical and scientific synergies occur as a result of the intimate association of the various techniques and scientists experienced in the applications of synchrotron radiation to Earth, environmental, and planetary science problems. The facility includes state-of-the-art instrumentation designed and built in-house, including custom X-ray optics, online and offline laser-based systems, specialized sample environments and positioning systems, as well as pixel-array and multi-crystal energy dispersive X-ray detectors, which are available to be shared among the experimental stations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  • Armstrong RT, Wildenschild D, Bay BK (2015) The effect of pore morphology on microbial enhanced oil recovery. J Petrol Sci Eng 130:16–25

    Article  Google Scholar 

  • Boivin P, Bachèlery P (2009) Petrology of 1977 to 1998 eruptions of Piton de la Fournaise, La Réunion Island. J Volcanol Geoth Res 184:109–125

    Article  Google Scholar 

  • Bracco JN, Lee SS, Stubbs JE et al (2017) Hydration structure of the barite (001)–water interface: comparison of x-ray reflectivity with molecular dynamics simulations. J Phys Chem C 121:12236–12248

    Article  Google Scholar 

  • Bracco JN, Lee SS, Stubbs JE et al (2018) Simultaneous adsorption and incorporation of Sr2+ at the barite (001)–water interface. J Phys Chem C 123:1194–1207

    Article  Google Scholar 

  • Brounce M, Stolper E, Eiler J (2022) The mantle source of basalts from Reunion Island is not more oxidized than the MORB source mantle. Contrib Miner Petrol 177:1–18

    Article  Google Scholar 

  • Bureau H, Métrich N, Pineau F, Semet M (1998) Magma–conduit interaction at Piton de la Fournaise volcano (Réunion Island): a melt and fluid inclusion study. J Volcanol Geoth Res 84:39–60

    Article  Google Scholar 

  • Burgisser A, Alletti M, Scaillet B (2015) Simulating the behavior of volatiles belonging to the C–O–H–S system in silicate melts under magmatic conditions with the software D-Compress. Comput Geosci 79:1–14

    Article  Google Scholar 

  • Chantel J, Frost DJ, McCammon CA et al (2012) Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys Res Lett 39:19

    Article  Google Scholar 

  • Chantel J, Manthilake G, Andrault D et al (2016) Experimental evidence supports mantle partial melting in the asthenosphere. Sci Adv 2:e1600246

    Article  Google Scholar 

  • Chariton S, Bykov M, Bykova E et al (2020) The crystal structures of Fe-bearing MgCO3 sp2- and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation. Acta Crystallographica Section E 76:715–719

    Article  Google Scholar 

  • Chen H, Leinenweber K, Prakapenka V et al (2020a) Possible H2O storage in the crystal structure of CaSiO3 perovskite. Phys Earth Planet Inter 299:7. https://doi.org/10.1016/j.pepi.2019.106412

    Article  Google Scholar 

  • Chen HW, Leinenweber K, Prakapenka V et al (2020b) Phase transformation of hydrous ringwoodite to the lower-mantle phases and the formation of dense hydrous silica. Am Miner 105:1342–1348. https://doi.org/10.2138/am-2020-7261

    Article  Google Scholar 

  • Chen HW, Xie SY, Ko B et al (2020c) A new hydrous iron oxide phase stable at mid-mantle pressures. Earth Planet Sci Lett 550:9. https://doi.org/10.1016/j.epsl.2020.116551

    Article  Google Scholar 

  • Chen SA, Heaney PJ, Post JE et al (2021) Superhydrous hematite and goethite: a potential water reservoir in the red dust of Mars? Geology 49:1343–1347

    Article  Google Scholar 

  • Chu H-H, Car S, Socha AL et al (2017) The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds. Sci Rep 7:1–10

    Article  Google Scholar 

  • Cil MB, Xie M, Packman AI, Buscarnera G (2017) Solute mixing regulates heterogeneity of mineral precipitation in porous media. Geophys Res Lett 44:6658–6666

    Article  Google Scholar 

  • Cottrell E, Lanzirotti A, Mysen B et al (2018) A Mössbauer-based XANES calibration for hydrous basalt glasses reveals radiation-induced oxidation of Fe. Am Min: J Earth Planet Mater 103:489–501

    Article  Google Scholar 

  • Cron BR, Sheik CS, Kafantaris F-CA et al (2020) Dynamic biogeochemistry of the particulate sulfur pool in a buoyant deep-sea hydrothermal plume. ACS Earth Space Chem 4:168–182. https://doi.org/10.1021/acsearthspacechem.9b00214

    Article  Google Scholar 

  • Dera P, Zhuravlev K, Prakapenka V et al (2013) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Res 33:466–484. https://doi.org/10.1080/08957959.2013.806504

    Article  Google Scholar 

  • Desmau M, Gélabert A, Levard C et al (2018) Dynamics of silver nanoparticles at the solution/biofilm/mineral interface. Environ Sci Nano 5:2394–2405

    Article  Google Scholar 

  • Desmau M, Levard C, Vidal V et al (2020) How microbial biofilms impact the interactions of quantum dots with mineral surfaces? NanoImpact 19:100247

    Article  Google Scholar 

  • Dorfman SM, Badro J, Nabiei F et al (2018) Carbonate stability in the reduced lower mantle. Earth Planet Sci Lett 489:84–91. https://doi.org/10.1016/j.epsl.2018.02.035

    Article  Google Scholar 

  • Dubrovinskaia N, Dubrovinsky L, Solopova NA et al (2016) Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci Adv 2:e1600341. https://doi.org/10.1126/sciadv.1600341

    Article  Google Scholar 

  • Dyar MD, McCanta M, Breves E et al (2016) Accurate predictions of iron redox state in silicate glasses:a multivariate approach using X-ray absorption spectroscopy. Am Miner 101:744–747

    Article  Google Scholar 

  • Eng PJ, Newville M, Rivers ML, Sutton SR (1998) Dynamically figured Kirkpatrick Baez X-ray microfocusing optics. In: X-Ray Microfocusing: Applications and Techniques. International Society for Optics and Photonics, pp 145–157

  • Fan DW, Fu SY, Yang J et al (2019) Elasticity of single-crystal periclase at high pressure and temperature: the effect of iron on the elasticity and seismic parameters of ferropericlase in the lower mantle. Am Miner 104:262–275. https://doi.org/10.2138/am-2019-6656

    Article  Google Scholar 

  • Fan D, Fu S, Lu C et al (2020) Elasticity of single-crystal Fe-enriched diopside at high-pressure conditions: implications for the origin of upper mantle low-velocity zones. Am Miner 105:363–374

    Article  Google Scholar 

  • Ferrand TP, Hilairet N, Incel S et al (2017) Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nat Commun 8:1–11

    Article  Google Scholar 

  • Fu SY, Yang J, Zhang YJ et al (2018) Melting behavior of the lower-mantle ferropericlase across the spin crossover: implication for the ultra-low velocity zones at the lowermost mantle. Earth Planet Sci Lett 503:1–9. https://doi.org/10.1016/j.epsl.2018.09.014

    Article  Google Scholar 

  • Gasc J, Hilairet N, Yu T et al (2017) Faulting of natural serpentinite: implications for intermediate-depth seismicity. Earth Planet Sci Lett 474:138–147

    Article  Google Scholar 

  • Goncharov AF, Prakapenka VB, Struzhkin VV et al (2010) X-ray diffraction in the pulsed laser heated diamond anvil cell. Rev Sci Instrum 81:5. https://doi.org/10.1063/1.3499358

    Article  Google Scholar 

  • Head E, Lanzirotti A, Newville M, Sutton S (2018) Vanadium, Sulfur, and Iron valences in melt inclusions as a window into magmatic processes: a case study at Nyamuragira Volcano, Africa. Geochim Cosmochim Acta 226:149–173. https://doi.org/10.1016/j.gca.2018.01.033

    Article  Google Scholar 

  • Heaney PJ, Oxman MJ, Chen SA (2020) A structural study of size-dependent lattice variation: in situ X-ray diffraction of the growth of goethite nanoparticles from 2-line ferrihydrite. Am Min: J Earth Planet Mater 105:652–663

    Article  Google Scholar 

  • Herring AL, Andersson L, Wildenschild D (2016) Enhancing residual trapping of supercritical CO2 via cyclic injections. Geophys Res Lett 43:9677–9685

    Article  Google Scholar 

  • Holtgrewe N, Greenberg E, Prescher C et al (2019a) Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS. High Press Res 39:457–470

    Article  Google Scholar 

  • Holtgrewe N, Greenberg E, Prescher C et al (2019b) Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS. High Press Res 39:457–470. https://doi.org/10.1080/08957959.2019b.1647536

    Article  Google Scholar 

  • Hong X, Newville M, Duffy TS et al (2013) X-ray absorption spectroscopy of GeO2glass to 64 GPa. J Phys: Condens Matter 26:035104. https://doi.org/10.1088/0953-8984/26/3/035104

    Article  Google Scholar 

  • Hong X, Newville M (2020) Polyamorphism of GeO2 Glass at High Pressure. Physica Status Solidi (b) 257:2000052. https://doi.org/10.1002/pssb.202000052

  • Incel S, Hilairet N, Labrousse L et al (2017) Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist. Earth Planet Sci Lett 459:320–331

    Article  Google Scholar 

  • Incel S, Labrousse L, Hilairet N et al (2019) Reaction-induced embrittlement of the lower continental crust. Geology 47:235–238

    Article  Google Scholar 

  • Jing Z, Wang Y, Kono Y et al (2014) Sound velocity of Fe–S liquids at high pressure: implications for the Moon’s molten outer core. Earth Planet Sci Lett 396:78–87

    Article  Google Scholar 

  • Jing Z, Yu T, Xu M et al (2020) High-pressure sound velocity measurements of liquids using in situ ultrasonic techniques in a multianvil apparatus. Minerals 10:126. https://doi.org/10.3390/min10020126

    Article  Google Scholar 

  • Kantor I, Prakapenka V, Kantor A et al (2012) BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev Sci Instrum 83:6. https://doi.org/10.1063/1.4768541

    Article  Google Scholar 

  • Kim T, Ko B, Greenberg E et al (2020) Low melting temperature of anhydrous mantle materials at the core-mantle boundary. Geophys Res Lett 47:10. https://doi.org/10.1029/2020gl089345

    Article  Google Scholar 

  • Kong KP, Fischer TB, Heaney PJ et al (2019) Mineralogical and geochemical constraints on chromium oxidation induced by birnessite. Appl Geochem 108:104365

    Article  Google Scholar 

  • Kravchenko A, Negassa W, Guber A, Rivers M (2015) Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics, Sci. Rep., 5, 16261. Nature Scientific Reports 5:

  • Lai XJ, Zhu F, Zhang JS et al (2020) An externally-heated diamond Anvil Cell for synthesis and single-crystal elasticity determination of Ice-VII at high pressure-temperature conditions. J vis Exp 160:14. https://doi.org/10.3791/61389

    Article  Google Scholar 

  • Lanzirotti A, Dyar MD, Sutton S et al (2018) Accurate predictions of microscale oxygen barometry in basaltic glasses using V K-edge X-ray absorption spectroscopy: a multivariate approach. Am Miner 103:1282–1297. https://doi.org/10.2138/am-2018-6319

    Article  Google Scholar 

  • Lesher CE, Wang Y, Gaudio S et al (2009) Volumetric properties of magnesium silicate glasses and supercooled liquid at high pressure by X-ray microtomography. Phys Earth Planet Inter 174:292–301

    Article  Google Scholar 

  • Lv M, Dorfman SM, Badro J et al (2021) Reversal of carbonate-silicate cation exchange in cold slabs in Earth’s lower mantle. Nat Commun 12:7. https://doi.org/10.1038/s41467-021-21761-9

    Article  Google Scholar 

  • McBriarty ME, von Rudorff GF, Stubbs JE et al (2017) Dynamic stabilization of metal oxide–water interfaces. J Am Chem Soc 139:2581–2584

    Article  Google Scholar 

  • McBriarty ME, Stubbs JE, Eng PJ, Rosso KM (2018a) Potential-specific structure at the hematite-electrolyte interface. Adv Func Mater 28:1705618

    Article  Google Scholar 

  • McBriarty ME, Stubbs JE, Eng PJ, Rosso KM (2018b) Reductive dissolution mechanisms at the hematite-electrolyte interface probed by in situ X-ray scattering. J Phys Chem C 123:8077–8085

    Article  Google Scholar 

  • Neumann J, Qiu C, Eng P et al (2021) Effect of background electrolyte composition on the interfacial formation of Th (IV) nanoparticles on the muscovite (001) basal plane. J Phys Chem C 125:16524–16535

    Article  Google Scholar 

  • Nishiyama N, Wang Y (2009) Development of Experimental Techniques Using LVP (Large Volume Press) at GSECARS Beamlines, Advanced Photon Source (in Japanese with English abstract). Rev High Pressure Sci Tech 18:

  • Phillips-Lander CM, Harrold Z, Hausrath EM et al (2020) Snow Algae Preferentially Grow on Fe-containing Minerals and Contribute to the Formation of Fe Phases. Geomicrobial J 37:572–581. https://doi.org/10.1080/01490451.2020.1739176

    Article  Google Scholar 

  • Pichavant M, Brugier Y, Muro AD (2016) Petrological and experimental constraints on the evolution of Piton de la Fournaise magmas. In: Active Volcanoes of the Southwest Indian Ocean. Springer, pp 171–184

  • Prakapenka VB, Shen GY, Rivers ML et al (2005) Grain-size control in situ at high pressures and high temperatures in a diamond-anvil cell. J Synchrot Radiat 12:560–565. https://doi.org/10.1107/s0909049505021928

    Article  Google Scholar 

  • Prakapenka VB, Kubo A, Kuznetsov A et al (2008) Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res 28:225–235

    Article  Google Scholar 

  • Prakapenka VB, Holtgrewe N, Lobanov SS, Goncharov AF (2021) Structure and properties of two superionic ice phases. Nat Phys 17:1233. https://doi.org/10.1038/s41567-021-01351-8

    Article  Google Scholar 

  • Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res 35:223–230

    Article  Google Scholar 

  • Qiu C, Majs F, Douglas TA et al (2018a) In situ structural study of Sb (V) adsorption on hematite (11̅02) using X-ray surface scattering. Environ Sci Technol 52:11161–11168

    Article  Google Scholar 

  • Qiu C, Majs F, Eng PJ et al (2018b) In situ structural study of the surface complexation of lead (II) on the chemically mechanically polished hematite (11 02) surface. J Colloid Interface Sci 524:65–75

    Article  Google Scholar 

  • Redmer R, Mattsson TR, Nettelmann N, French M (2011) The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211:798–803

    Article  Google Scholar 

  • Rivers M, Prakapenka VB, Kubo A et al (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28:273–292

    Article  Google Scholar 

  • Rivers ML, Wang Y (2006) Recent developments in microtomography at GeoSoilEnviroCARS. In: Developments in X-ray tomography V. SPIE, pp 156–170

  • Rivers ML, Sutton SR, Eng PJ (1999) Geoscience applications of X-ray computed microtomography. In: Developments in X-ray Tomography II. International Society for Optics and Photonics, pp 78–86

  • Rivers ML, Citron DT, Wang Y (2010) Recent developments in computed tomography at GSECARS. In: Developments in X-Ray Tomography VII. SPIE, pp 83–97

  • Rivers ML (2012) tomoRecon: High-speed tomography reconstruction on workstations using multi-threading. In: Developments in X-Ray Tomography VIII. SPIE, pp 169–181

  • Rivers ML (2016) High-speed tomography using pink beam at GeoSoilEnviroCARS. In: Developments in X-ray Tomography X. International Society for Optics and Photonics, p 99670X

  • Sanematsu P, Shen Y, Thompson K et al (2015) Image-based stokes flow modeling in bulk proppant packs and propped fractures under high loading stresses. J Petrol Sci Eng 135:391–402

    Article  Google Scholar 

  • Schmidt M, Eng PJ, Stubbs JE et al (2011) A new x-ray interface and surface scattering environmental cell design for in situ studies of radioactive and atmosphere-sensitive samples. Rev Sci Instrum 82:075105

    Article  Google Scholar 

  • Schubnel A, Brunet F, Hilairet N et al (2013) Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory. Science 341:1377–1380

    Article  Google Scholar 

  • Shen GY, Prakapenka VB, Rivers ML, Sutton SR (2004) Structure of liquid iron at pressures up to 58 GPa. Phys Rev Lett 92:4. https://doi.org/10.1103/PhysRevLett.92.185701

    Article  Google Scholar 

  • Shi F, Wang Y, Yu T et al (2018) Lower-crustal earthquakes in southern Tibet are linked to eclogitization of dry metastable granulite. Nat Commun 9:1–13

    Article  Google Scholar 

  • Shi WG, Sun NY, Li XY et al (2021) Single-crystal elasticity of high-pressure ice up to 98 GPa by Brillouin Scattering. Geophys Res Lett 48:11. https://doi.org/10.1029/2021gl092514

    Article  Google Scholar 

  • Shi F, Wang Y, Wen J et al (2022) Metamorphism-facilitated faulting in deforming orthopyroxene: implications for global intermediate-depth seismicity. Proc Natl Acad Sci 119:e2112386119

    Article  Google Scholar 

  • Sinogeikin S, Bass J, Prakapenka V et al (2006a) Brillouin spectrometer interfaced with synchrotron radiation for simultaneous X-ray density and acoustic velocity measurements. Rev Sci Instrum 77:103905

    Article  Google Scholar 

  • Socha AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci 5:106

    Article  Google Scholar 

  • Stack AG, Stubbs JE, Srinivasan SG et al (2018) Mineral-water interface structure of Xenotime (YPO4){100}. J Phys Chem C 122:20232–20243

    Article  Google Scholar 

  • Stubbs JE, Chaka AM, Ilton ES et al (2015) UO 2 oxidative corrosion by nonclassical diffusion. Phys Rev Lett 114:246103

    Article  Google Scholar 

  • Stubbs JE, Legg BA, Lee SS et al (2019) Epitaxial growth of gibbsite sheets on the basal surface of muscovite mica. J Phys Chem C 123:27615–27627

    Article  Google Scholar 

  • Stubbs JE, Wanhala AK, Eng PJ (2021) Interfacial X-Ray Scattering from Small Surfaces: Adapting Mineral-Fluid Structure Methods for Microcrystalline Materials. Clays Clay Miner 69:1–14

    Article  Google Scholar 

  • Sutton SR, Karner J, Papike J et al (2005) Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochim Cosmochim Acta 69:2333–2348

    Article  Google Scholar 

  • Sutton SR, Brearley AJ, DobricĂ E et al (2020a) Valence determinations and oxybarometry on FIB-sectioned olivine and pyroxene using correlated Ti, V, and Cr micro-XAFS spectroscopy: evaluation of ion-milling effects and application to Antarctic micrometeorite grains. Meteorit Planet Sci 55:2553–2569. https://doi.org/10.1111/maps.13603

    Article  Google Scholar 

  • Sutton SR, Lanzirotti A, Newville M et al (2020b) Oxybarometry and valence quantification based on microscale X-ray absorption fine structure (XAFS) spectroscopy of multivalent elements. Chem Geol 531:119305

    Article  Google Scholar 

  • Tinker D, Lesher CE, Baxter GM et al (2004) High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation. Am Miner 89:1701–1708

    Article  Google Scholar 

  • Todd KA, Watson HC, Yu T, Wang Y (2016) The effects of shear deformation on planetesimal core segregation: results from in-situ X-ray micro-tomography. Am Miner 101:1996–2004

    Article  Google Scholar 

  • Tschauner O, Huang S, Greenberg E et al (2018) Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359:1136. https://doi.org/10.1126/science.aao3030

    Article  Google Scholar 

  • Wang Y, Uchida T, Westferro F et al (2005) High-pressure x-ray tomography microscope: synchrotron computed microtomography at high pressure and temperature. Rev Sci Instrum 76:073709

    Article  Google Scholar 

  • Wang Y, Rivers M, Sutton S et al (2009) The large-volume high-pressure facility at GSECARS: a “Swiss-army-knife” approach to synchrotron-based experimental studies. Phys Earth Planet Inter 174:270–281. https://doi.org/10.1016/j.pepi.2008.06.017

    Article  Google Scholar 

  • Wang Y, Lesher C, Fiquet G et al (2011) In situ high-pressure and high-temperature X-ray microtomographic imaging during large deformation: a new technique for studying mechanical behavior of multiphase composites. Geosphere 7:40–53

    Article  Google Scholar 

  • Wang Y, Sakamaki T, Skinner LB et al (2014) Atomistic insight into viscosity and density of silicate melts under pressure. Nat Commun 5:1–10

    Google Scholar 

  • Wang Y, Gélabert A, Michel FM et al (2016a) Effect of biofilm coatings at metal-oxide/water interfaces I: Pb (II) and Zn (II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces. Geochim Cosmochim Acta 188:368–392

    Article  Google Scholar 

  • Wang Y, Gélabert A, Michel FM et al (2016b) Effect of biofilm coatings at metal-oxide/water interfaces II: competitive sorption between Pb (II) and Zn (II) at Shewanella oneidensis/metal-oxide/water interfaces. Geochim Cosmochim Acta 188:393–406

    Article  Google Scholar 

  • Wang Y, Michel FM, Choi Y et al (2016c) Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces. Geochim Cosmochim Acta 188:407–423

    Article  Google Scholar 

  • Wang Y, Zhu L, Shi F et al (2017) A laboratory nanoseismological study on deep-focus earthquake micromechanics. Sci Adv 3:e1601896

    Article  Google Scholar 

  • Wenz MD, Jacobsen SD, Zhang D et al (2019) Fast identification of mineral inclusions in diamond at GSECARS using synchrotron X-ray microtomography, radiography and diffraction. J Synchrotron Radiat 26:1763–1768

    Article  Google Scholar 

  • Xu M, Jing Z, Chantel J et al (2018) Ultrasonic velocity of diopside liquid at high pressure and temperature: constraints on velocity reduction in the upper mantle due to partial melts. J Geophys Res: Solid Earth 123:8676–8690

    Article  Google Scholar 

  • Xu T, Stubbs JE, Eng PJ, Catalano JG (2019) Comparative response of interfacial water structure to pH variations and arsenate adsorption on corundum (0 1 2) and (0 0 1) surfaces. Geochim Cosmochim Acta 246:406–418

    Article  Google Scholar 

  • Xu M, Jing Z, Bajgain SK et al (2020a) High-pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle. Proc Natl Acad Sci USA 117:18285. https://doi.org/10.1073/pnas.2004347117

    Article  Google Scholar 

  • Xu M, Jing Z, Van Orman JA et al (2020b) Density of NaAlSi2O6 Melt at high pressure and temperature measured by In-Situ X-ray Microtomography. Minerals 10:161. https://doi.org/10.3390/min10020161

    Article  Google Scholar 

  • Xu M, Jing Z, Yu T et al (2022) Sound velocity and compressibility of melts along the hedenbergite (CaFeSi2O6)-diopside (CaMgSi2O6) join at high pressure: implications for stability and seismic signature of Fe-rich melts in the mantle. Earth Planet Sci Lett 577:117250

    Article  Google Scholar 

  • Yu T, Prescher C, Ryu YJ et al (2019a) A Paris-Edinburgh cell for high-pressure and high-temperature structure studies on silicate liquids using monochromatic synchrotron radiation. Minerals 9:715. https://doi.org/10.3390/min9110715

    Article  Google Scholar 

  • Yu T, Wang Y, Rivers ML, Sutton SR (2019b) An upgraded and integrated large-volume high-pressure facility at the GeoSoilEnviroCARS bending magnet beamline of the Advanced Photon Source. CR Geosci 351:269–279. https://doi.org/10.1016/j.crte.2018.09.006

    Article  Google Scholar 

  • Yuan HS, Zhang L, Ohtani E et al (2019) Stability of Fe-bearing hydrous phases and element partitioning in the system MgO-Al2O3-Fe2O3-SiO2-H2O in Earth’s lowermost mantle. Earth Planet Sci Lett 524:10. https://doi.org/10.1016/j.epsl.2019.115714

    Article  Google Scholar 

  • Zinin PV, Prakapenka VB, Burgess K et al (2016) Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system. Rev Sci Instrum 87:123908

    Article  Google Scholar 

Download references

Acknowledgements

GeoSoilEnviroCARS is primarily supported by the National Science Foundation—Earth Sciences Instrumentation and Facilities (EAR-1634415). Some support also derives from development grants from other NSF agencies (Geophysics-EAR-1620548, Petrology and Geochemistry- EAR-1834930, CSEDI-EAR-1661489, FRES-EAR-1925920), DOE-BES Geosciences (DE-SC0019108, DE-SC0020112, DE-SC0021222), NASA (LARS-80NSSC21K0611, ANGSA-80NSSC19K0802 subaward, SSERVI-80NSSC19M0215 subaward). GSECARS uses resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Funding

National Science Foundation, EAR-1634415, Mark L. Rivers, U.S. Department of Energy, DE-SC0019108, Joanne E. Stubbs, DE-SC0020112, Mark L. Rivers, DE-SC0021222, Matthew Newville, National Aeronautics and Space Administration, 80NSSC21K0611, Stephen R. Sutton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Sutton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection “Experimental & Analytical Techniques at Extreme & Ambient Conditions”, guest edited by Stella Chariton, Vitali B. Prakapenka and Haozhe (Arthur) Liu".

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sutton, S.R., Rivers, M.L., Chariton, S. et al. GeoSoilEnviroCARS (Sector 13) at the Advanced Photon Source: a comprehensive synchrotron radiation facility for Earth science research at ambient and extreme conditions. Phys Chem Minerals 49, 32 (2022). https://doi.org/10.1007/s00269-022-01207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-022-01207-4

Keywords

  • Synchrotron radiation
  • X-ray analytical methods
  • User facilities
  • Geochemistry
  • Geophysics