Skip to main content
Log in

Saranovskite, SrCaFe2+2(Cr4Ti2)Ti12O38, a new crichtonite-group mineral

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The new crichtonite-group mineral saranovskite, ideally SrCaFe2+2(Cr4Ti2)Ti12O38, was discovered in the Glavnoe Saranovskoe deposit, Middle Urals, Russia, and named after the type locality. The associated minerals are chromite, Cr-bearing clinochlore, and calcite. Saranovskite forms black crude equant crystals about 2 mm across. The lustre is submetallic, and the streak is brownish-gray. Cleavage is not observed. The Mohs hardness is 6. Density calculated using the empirical formula is equal to 4.501 g cm–3. The reflectance spectra in visible range are given. The IR spectrum shows the absence of H-, B- and C-bearing groups. The Raman spectrum of saranovskite confirms the absence of H-bearing groups and indicates a rather high degree of ordering of Ti4+ and lower-valence cations. The chemical composition of saranovskite is (wt.%; electron microprobe, total iron apportioned between FeO and Fe2O3 taking into account charge balance): MgO 2.01, CaO 1.43, MnO 0.21, FeO 8.14, SrO 3.27, BaO 2.18, Al2O3 0.53, Sc2O3 0.69, Cr2O3 10.27, Fe2O3 2.19, Y2O3 1.56, La2O3 0.94, Ce2O3 0.91, Pr2O3 0.14, Nd2O3 0.35, TiO2 64.25, ZrO2 0.58, total 99.65. The crystal chemical formula of saranovskite is (Sr0.55Ba0.25Ln0.10Ca0.10)(Ca0.36Y0.25Ln0.16Fe2+0.08Zr0.10Mn0.05) (Fe2+1.12Mg0.88)(Cr3+2.34Ti2.28Fe2+0.91Fe3+0.11Al0.18Sc3+0.18)(Ti5.82Fe3+0.18)Ti6.0O38. The idealized formula is SrCaFe2+2(Cr4Ti2)Ti12O38. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R = 0.0243. The new mineral is isostructural to other crichtonite-group members. Saranovskite is trigonal, space group R\(\overline{3}\), with a = 10.3553(2) Å, c = 20.7301(4) Å, V = 1925.12(8) Å3 and Z = 3. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.398 (75) (024), 2.881 (100) (– 126), 2.842 (65) (– 234), 2.247 (67) (– 144). 2.137 (76) (– 345), 1.799 (63) (– 348), 1.597 (72) (– 1.4.10, 152), 1.439 (76) (520).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrianov VI (1987) AREN-85 system of crystallographical programs RENTGEN for EVM NORD, SM-4 and EC. Crystallogr Rep 32(1):228–232

    Google Scholar 

  • Armbruster T, Kunz M (1990) Cation arrangement in an unusual uranium-rich senaite crystal structure study at 130 K. Eur J Mineral 2:163–170

    Article  Google Scholar 

  • Barkov AY, Savchenko YE, Men’shikov YP, Barkova LP (1996) Loveringite from the Last-Yavr mafic-ultramafic intrusion, Kola Peninsula; a second occurrence in Russia. Norsk Geol Tiddsskrift 76:115–120

    Google Scholar 

  • Biagioni C, Orlandi P, Pasero M, Nestola F, Bindi L (2014) Mapiquiroite, (Sr, Pb)(U, Y)Fe2(Ti, Fe3+)18O38, a new member of the crichtonite group from the Apuan Alps, Tuscany, Italy. Eur J Mineral 26:427–437

    Article  Google Scholar 

  • Bittarello E, Ciriotti ME, Costa E, Gallo LM (2014) “Mohsite” of Colomba: identification as dessauite-(Y). Intern J Mineral. https://doi.org/10.1155/2014/287069

    Article  Google Scholar 

  • BreseO`Keeffe NEM (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197

    Google Scholar 

  • Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO 146(3):104–107

    Google Scholar 

  • Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, pp. 1716

  • Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer: Cham–Heidelberg–Dordrecht–New York–London, pp. 1109

  • Chukanov NV, Vorobei SS, Ermolaeva VN, Varlamov DA, Plechov PY, Jančev S, Bovkun AV (2019) New data on chemical composition and vibrational spectra of magnetoplumbite-group minerals. Geol Ore Depos 61:637–646

    Article  Google Scholar 

  • Frost RL, Reddy BJ (2011) The effect of metamictization on the Raman spectroscopy of the uranyl titanate mineral davidite (La, Ce)(Y, U, Fe2+)(Ti, Fe3+)20(O, OH)38. Radiat Eff Defects Solids 166(2):131–136

    Article  Google Scholar 

  • Gatehouse BM, Grey IE, Campbell IH, Kelly PR (1978) The crystal structure of loveringite – a new member of the crichtonite group. Am Mineral 63:28–36

    Google Scholar 

  • Gatehouse BM, Grey IE, Kelly PR (1979) The crystal structure of davidite. Am Mineral 64:1010–1017

    Google Scholar 

  • Gatehouse BM, Grey IE, Smyth JR (1983) Structure refinement of mathiasite, (K0.62Na0.14Ba0.14Sr0.10)Σ1.0[Ti12.90Cr3.10Mg1.53Fe2.15Zr0.67Ca0.29(V, Nb, Al)0.36]Σ21.0O38. Acta Cryst C39:421–422

    Google Scholar 

  • Grey IE, Gatehouse BM (1978) The crystal structure of landauite, NaMnZn2(Ti, Fe)6Ti12O38. Can Mineral 16:63–68

    Google Scholar 

  • Grey IE, Lloyd DJ (1976) Crystal structure of senaite. Acta Cryst B32:1509–1513

    Article  Google Scholar 

  • Grey IE, Lloyd DJ, White JS (1976) The structure of crichtonite and its relationship to senaite. Am Mineral 61:1203–1212

    Google Scholar 

  • Hey MH, Embrey PG, Fejér EE (1969) Crichtonite, a distinct species. Mineral Mag 37:349–356

    Article  Google Scholar 

  • Ivanov OK (1990) Layered chromite-bearing ultramafic formations of urals. Moscow: Nedra, pp. 243. (in Russian)

  • Ivanov OK (1997) Mineral associations of the Saranovskoe chromite deposit. Ekaterinburg: Institute of geology and geochemistry, pp. 123. (in Russian)

  • Ivanov OK (2016) Mineralogy of the Saranovskoe chromite deposit (Middle Urals). Mineral Alm 21(2):120

    Google Scholar 

  • Konzett J, Yang H, Frost DJ (2005) Phase relations and stability of magnetoplumbite-and crichtonite-series phases under upper-mantle PT conditions: an experimental study to 15 GPa with implications for LILE metasomatism in the lithospheric mantle. J Petrol 46(4):749–781

    Article  Google Scholar 

  • Lorand J-P, Cottin J-Y, Parodi GC (1987) Occurrence and petrological significance of loveringite in the Western Laouni layered complex, Southern Hoggar, Algeria. Can Mineral 25:683–693

    Google Scholar 

  • Lykova IS, Varlamov DA, Chukanov NV, Pekov IV, Zubkova NV (2018) Crystal chemistry of shuiskite and chromian pumpellyite-(Mg). Eur J Mineral 30:1133–1139

    Article  Google Scholar 

  • Lykova I, Varlamov DA, Chukanov NV, Pekov IV, Belakovskiy DI, Ivanov OK, Zubkova NV, Britvin SN (2020) Chromium members of the pumpellyite group: shuiskite-(Cr), Ca2CrCr2[SiO4][Si2O6(OH)](OH)2O, a new mineral, and shuiskite-(Mg), a new species name for shuiskite. Minerals 10:390

    Article  Google Scholar 

  • Menezes Filho LAD, Chukanov NV, Rastsvetaeva RK, Aksenov SM, Pekov IV, Chaves MLSC, Scholz R, Atencio D, Brandão PRG, Romano A, de Oliveira LCA, Ardisson JD, Krambrock K, Moreira RL, Guimarães FS, Persiano AC, Richards RP (2015) Almeidaite, PbZn2(Mn, Y)(Ti, Fe3+)18O37(OH, O), a new crichtonite-group mineral, from Novo Horizonte, Bahia, Brazil. Mineral Mag 79:269–283

    Article  Google Scholar 

  • Mills SJ, Bindi L, Cadoni M, Kampf AR, Ciriotti ME, Ferraris G (2012) Paseroite, PbMn2+(Mn2+, Fe2+)2(V5+, Ti, Fe3+)18O38, a new member of the crichtonite group. Eur J Mineral 24:1061–1067

    Article  Google Scholar 

  • Orlandi P, Pasero M, Duchi G, Olmi F (1997) Dessauite, (Sr, Pb)(Y, U)(Ti, Fe3+)20O38, a new mineral of the crichtonite group from Buca della Vena mine, Tuscany, Italy. Am Mineral 82:807–811

    Article  Google Scholar 

  • Orlandi P, Pasero M, Rotiroti N, Olmi F, Demartin F, Moëlo Y (2004) Gramaccioliite-(Y), a new mineral of the crichtonite group from Stura Valley, Piedmont, Italy. Eur J Mineral 16:171–175

    Article  Google Scholar 

  • Rastsvetaeva RK, Aksenov SM, Chukanov NV, Menezes LAD (2014) The crystal structure of almeidaite, a new mineral of the crichtonite group. Dokl Chem 455:53–57

    Article  Google Scholar 

  • Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.39.46 Rigaku Oxford Diffraction: Oxford, UK, 2018

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8

    Google Scholar 

  • Sustavov SG, Khanin DA, Shagalov ES (2019) Chromceladonite from the Southern Sarany chromite deposit (Northern Urals). Geol Ore Depos 61(7):680–688

    Article  Google Scholar 

  • Tarkian M, Mutanen T (1987) Loveringite from the Koitelainen Layered Intrusion, Northern Finland. Mineral Petrol 37:37–50

    Article  Google Scholar 

  • Wülser PA, Meisser N, Brugger J, Schenk K, Ansermet S, Bonin M, Bussy F (2005) Cleusonite, (Pb, Sr)(U4+, U6+)(Fe2+, Zn)2(Ti, Fe2+, Fe3+)18(O, OH)38, a new mineral species of the crichtonite group from the western Swiss Alps. Eur J Mineral 17:933–942

    Article  Google Scholar 

  • Zhang J, Ma J, Li L (1988) The crystal structure and crystal chemistry of lindsleyite and mathiasite. Geol Rev 34:132–144

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Radek Škoda and an anonymous reviewer for valuable comments. This work was performed in accordance with the state task, state registration no. AAA-A19-119092390076-7 (mineralogical study, single crystal X-ray analysis, and IR spectroscopy) and was partly supported by Lomonosov Moscow State University Program of Development (Raman spectroscopy). The authors thank the SPbSU X-Ray Diffraction Resource Center and Center for Molecule Composition Studies of INEOS RAS for instrumental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita V. Chukanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Oleg K. Ivanov deceased 01 February 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chukanov, N.V., Rastsvetaeva, R.K., Kazheva, O.N. et al. Saranovskite, SrCaFe2+2(Cr4Ti2)Ti12O38, a new crichtonite-group mineral. Phys Chem Minerals 47, 49 (2020). https://doi.org/10.1007/s00269-020-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01119-1

Keywords

Navigation