Rhabdoborite-(V), rhabdoborite-(Mo) and rhabdoborite-(W): a new group of borate minerals with the general formula \({{\text{Mg}}_{12}} {M_{1\nicefrac{1}{3}}} {{\text{O}}_{6}}\)[(BO3)6–x(PO4)xF2–x] (M = V5+, Mo6+ or W6+ and x < 1)

Abstract

Three new borate minerals rhabdoborite-(V), rhabdoborite-(Mo) and rhabdoborite-(W), forming the rhabdoborite group, are found in the Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. They are closely associated with each other and anhydrite, diopside, hematite, schäferite, berzeliite, svabite, calciojohillerite, ludwigite, forsterite, magnesioferrite, baryte, fluorapatite, udinaite, arsenudinaite, and powellite. Rhabdoborites form long-prismatic to acicular crystals up to 0.04 × 0.04 × 7 mm3 typically combined in aggregates up to 1 cm. They are transparent, light yellow, with vitreous lustre. The empirical formulae of holotypes, calculated based on 26 O + F apfu, are: rhabdoborite-(V): (Mg11.85Fe3+0.11Mn0.06Ca0.02)Σ12.04(V5+0.70Mo6+0.36W6+0.21Te6+0.01)Σ1.28[(P0.35As5+0.16)Σ0.51B5.50]Σ6.01O24.35F1.65; rhabdoborite-(Mo): (Mg11.78Mn0.07Fe3+0.06Ca0.06)Σ11.97(Mo6+0.65V5+0.49W6+0.19)Σ1.33[(P0.31As5+0.14)Σ0.45B5.54]Σ5.99O24.33F1.67; rhabdoborite-(W): (Mg11.74Fe3+0.09Ca0.03Mn0.02)Σ11.88(W6+0.75V5+0.44Mo6+0.13)Σ1.32[(P0.25As5+0.13)Σ0.38B5.65]Σ6.03O24.42F1.58. The simplified formulae are: rhabdoborite-(V): \({{\text{Mg}}_{12}}({\text{V}}^{5+}, M^{6+})_{1\nicefrac{1}{3}}{{\text{O}}_{6}}\){(BO3)6–x(PO4)xF2–x} (M6+  = Mo, W and x < 1); rhabdoborite-(Mo): \({{\text{Mg}}_{12}}{{\text{Mo}}_{\;\;\; 1\nicefrac{1}{3}}^{6+}}{{\text{O}}_{6}}\)(BO3)6F2; rhabdoborite-(W): \({{\text{Mg}}_{12}}{\text{W}}_{\;\;\; 1\nicefrac{1}{3}}^{6+}{{\text{O}}_{6}}\)(BO3)6F2. Rhabdoborites are hexagonal, P63, and Z = 1. The unit-cell parameters of rhabdoborite-(V)/rhabdoborite-(Mo)/rhabdoborite-(W) are: a 10.6314(4)/10.6304(3)/10.6366(5), c 4.5661(2)/4.56374(16)/4.5701(3) Å, and V 446.95(3)/446.63(3)/447.78(4) Å3. The crystal structures were solved from single-crystal XRD data, R1 = 0.0413, 0.0289 and 0.0418 for rhabdoborite-(V), rhabdoborite-(Mo) and rhabdoborite-(W), respectively. These isostructural minerals represent a novel structure type. The structure is based on a three-dimensional network (pseudo-framework) built by the (0001) layers formed by clusters Mg6O21F composed by Mg-centred octahedra and linked via BO3 triangles. The distorted octahedra MO6 (M = V5+, Mo6+, W6+) are located in gaps in the layers. The pair of anions, (BO3)3− triangle and adjacent F, is partially substituted by the (P,As5+)O43− tetrahedral anion. Rhabdoborites form a continuous solid-solution system in which contents of V, Mo and W are the main varying values. The rootname rhabdoborite reflects morphological (rhabdos is rod, in Greek) and chemical (borate) features of the minerals; the suffix-(V), -(Mo) or -(W) indicates predominant, species-defining M component.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.34. Agilent Technologies UK Ltd, Oxford

    Google Scholar 

  2. Aleksandrov SM (2007) Endogenous transformations of kotoite in calciphyres at magnesian-skarn deposits of boron. Geochemistry Int 45:666–684

    Google Scholar 

  3. Belkhiri S, Kars M, Mezaoui D (2009) K1.65V1.78W0.22O2(AsO4)2. Acta Crystallogr E65:i69

    Google Scholar 

  4. Belkhiri S, Mezaoui D, Pérez O (2017) Synthesis, structure determination and electrical properties of β-K0.399V2.623W0.377O7.5 with mixed occupation of vanadium and tungsten elements. Mater Sci Semicond Process 63:161–168

    Google Scholar 

  5. Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO 146(3):104–107 (in Russian)

    Google Scholar 

  6. Brovkin AA, Nikishova LV (1975) The crystal structure of α-Mg2BO3F and isomorphic substitution (3F)3- ↔ (BO3)3-. Sov Phys Crystallogr 20:452–455

    Google Scholar 

  7. Chernorukov HG, Knyazev AV, Kuznetsova NY (2010) Crystal structure of MIVWO6 (M = Li, Na) Compounds. Russ J Inorg Chem 55:343–346

    Google Scholar 

  8. Corella-Ochoa MN, Miras HN, Long DL, Cronin L (2012) Controlling the self-assembly of a mixed-metal Mo/V-selenite family of polyoxometalates. Chem A Eur J 18:13743–13754

    Google Scholar 

  9. de Paiva Floro Bonfim R, de Moura LC, Pizzala H, Caldarelli S, Paul S, Eon JG, Mentré O, Capron M, Delevoye L, Payen E (2007) Synthesis and structural characterization of a new nanoporous-like keggin heteropolyanion salt: K3(H2O)4[H2SiVW11O40](H2O)8+x. Inorg Chem 46:7371–7377

    Google Scholar 

  10. Driss H, Thouvenot R, Debbabi M (2008) Face-to-face interactions of metallic oxo-clusters: Synthesis and crystal structure of new isopolyvanadotungstate salts - Co(H2O)6K2V2W4O19 and [Co(H2O)6]2V2W4O19. Polyhedron 27:2059–2064

    Google Scholar 

  11. Ezzine Yahmed S, Nasri R, Zid MF, Driss A (2013) Lithium vanado(V)molybdate(VI), Li[VMoO6]. Acta Crystallogr E69:i57–i58

    Google Scholar 

  12. Fausti D, Nugroho AA, van Loosdrecht PHM, Klimin SA, Popova MN, Bezmaternych LN (2006) Raman scattering from phonons and magnons in RFe3(BO3)4. Phys Rev B 74:024403

    Google Scholar 

  13. Fedotov SA, Markhinin YK (eds) (1983) The great Tolbachik fissure eruption. Cambridge University Press, New York

    Google Scholar 

  14. Galuskina IO, Kadiyski M, Armbruster T, Galuskin EV, Pertsev NN, Dzierżanowski P, Wrzalik R (2008) A new natural phase in the system Mg2SiO4–Mg2BO3F–Mg2BO3(OH): composition, paragenesis and structure of OH-dominant pertsevite. Eur J Mineral 20:951–964

    Google Scholar 

  15. Galuskina IO, Ottolini L, Kadiyski M, Armbruster T, Galuskin EV, Dzierzanowski P, Winiarski A (2010) Pertsevite-(OH), a new mineral in the pertsevite series, Mg2(BO3), 1–x(SiO4)x(F, OH)1–x (x < 0.5), from the Snezhnoye deposit in Sakha-Yakutia Republic, Russia. Am Miner 95:953–958

    Google Scholar 

  16. Galy J, Meunier G, Senegas J, Hagenmuller P (1971) Etude cristallographique du systeme ternaire LiVWO6 – WO3 – LiV12W32O6 Á 700°C. J Inorg Nucl Chem 33:2403–2418

    Google Scholar 

  17. Galy J, Duc F, Svensson G, Baules P, Rozier P, Millet P (2005) Stacking disorder in Mo1+xV2–xO8 phase (0.12 ≤ x ≤ 0.18). Solid state chemistry - X-rays - TEM - physical properties. Solid State Sci 7:726–734

    Google Scholar 

  18. Halasyamani PS (2004) Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem Mater 16:3586–3592

    Google Scholar 

  19. Hu C, Duan C, Meng Q, Liu Y, Lu C, Reng X, Chen Y, Cao M (2000) Synthesis, structure and the e.s.r. spectrum of the mixed-valence molybdovandate Na2(NH4)4[(VIVVV8Mo)O28]·10H2O. Transit Met Chem 25:141–144

    Google Scholar 

  20. Kin’ones SO, Kaziev GZ, Bel’skii VK, Zavodnik VE, De Ita A, Volodina VA (2001) Synthesis and study of sodium hexatungstovanadate(V). Russ J Inorg Chem 46:962–966

    Google Scholar 

  21. Knyazev AV, Maczka M, Smirnova NN, Macalik L, Kuznetsova NYu, Letyanina IA (2009) Crystal structure, spectroscopy and thermodynamic properties of MIVWO6 (MI - Li, Na). J Solid State Chem 182:3003–3012

    Google Scholar 

  22. Kolitsch U (1999) Ein neues, Vanadium, Chrom und Wolfram enthaltendes Mineral aus einer Rankachit-Paragenese von der Grube Clara im mittleren Schwarzwald. Aufschluss 50:23–32

    Google Scholar 

  23. Kolitsch U, Giester G (2006) Rankachite, an unusual oxidic Ca-Fe-V-W-mineral from the Clara mine, Central Black Forest: crystal structure and revision of symmetry, unit cell and chemical formula. Zeitschrift für Kristallographie Supplement No 24:138

    Google Scholar 

  24. Mandarino JA (1981) The Gladstone-Dale relationship, Part IV. The compatibility concept and its application. Can Miner 19:441–450

    Google Scholar 

  25. Millet P, Gasquères C, Galy J (2002) A new vanadium-molybdenum mixed bronze family with a tunnel structure: the phases Ax(Mo, V)8O21 (A = K+, Rb+, Cs+). J Solid State Chem 163:210–217

    Google Scholar 

  26. Mössner B, Kemmler-Sack S (1985) 9R-Stapelvarianten vom Typ Ba3(B, B′)2O9–y mit B, B′ ≡ Mo, W, V, Ti. J Less-Common Met 114:333–341

    Google Scholar 

  27. Mucha D, Olszewski PK, Napruszewska B (1999) Structural investigation of the potassium vanadomolybdate crystal. J Solid State Chem 146:197–201

    Google Scholar 

  28. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  29. Nishikawa K, Kobayashi A, Sasaki Y (1975) The structure of polyvanadotungstates. II. The crystal structure of K7V5W8O40·12H2O. Bull Chem Soc Jpn 48:3152–3155

    Google Scholar 

  30. Pekov IV, Koshlyakova NN, Zubkova NV, Lykova IS, Britvin SN, Yapaskurt VO, Agakhanov AA, Shchipalkina NV, Turchkova AG, Sidorov EG (2018) Fumarolic arsenates – a special type of arsenic mineralization. Eur J Miner 30:305–322

    Google Scholar 

  31. Pekov IV, Turchkova AG, Yapaskurt VO, Sandalov FD, Sidorov EG (2019) Tellurium-bearing minerals in fumarole sublimates of the Tolbachik volcano (Kamchatka, Russia). X Int Symp Mineral Diversity: Research and Preservation. Sofia: 26

  32. Rigaku Oxford Diffraction (2018) CrysAlisPro software system, v. 1.171.39.46. Rigaku Corporation, Oxford, UK

  33. Ross-Medgaarden EI, Wachs IE (2007) Structural determination of bulk and surface tungsten oxides with UV–vis diffuse reflectance spectroscopy and Raman spectroscopy. J Phys Chem 111:15089–15099

    Google Scholar 

  34. Sandalov FD, Pekov IV, Koshlyakova NN, Yapaskurt VO, Agakhanov AA, Sidorov EG, Britvin SN (2020) Rutile enriched with chalcophile elements (Sb, Sn, Te) and Ti-rich varieties of tripuhyute and cassiterite from sublimates of active fumaroles at the Tolbachik volcano (Kamchatka, Russia). Zapiski RMO 149(2):22–41 (in Russian)

    Google Scholar 

  35. Schreyer W, Armbruster T, Bernhardt H-J, Medenbach O (2003) Pertsevite, a new silicatian magnesioborate mineral with an end-member composition Mg2BO3F, in kotoite marble from east of Verkhoyansk, Sakha-Yakutia, Russia. Eur J Miner 15:1007–1018

    Google Scholar 

  36. Shchipalkina NV, Pekov IV, Koshlyakova NN, Britvin SN, Zubkova NV, Varlamov DA, Sidorov EG (2020a) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia—part 1: Neso-, cyclo-, ino- And phyllosilicates. Eur J Miner 32:101–119

    Google Scholar 

  37. Shchipalkina NV, Pekov IV, Koshlyakova NN, Britvin SN, Zubkova NV, Varlamov DA, Sidorov EG (2020b) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia—part 2: tectosilicates. Eur J Mineral 32:121–136

    Google Scholar 

  38. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8

    Google Scholar 

  39. Smith DGW, Nickel EH (2007) A system of codification for unnamed minerals: report of the subcommittee for unnamed minerals of the IMA Commission on New Minerals, Nomenclature and Classification. Can Miner 45:983–990

    Google Scholar 

  40. Son J-H, Kwon Y-U (2004) Crystal engineering through face interactions between tetrahedral and octahedral building blocks: crystal structure of [ε-Al13O4(OH)24(H2O)12]2[V2W4O19]3(OH)2⋅27H2O. Inorg Chem 43:1929–1932

    Google Scholar 

  41. Symonds RB, Reed MH (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems; calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens Am J Sci 293:758–864

    Google Scholar 

  42. Wang SJ, Dong WK, Chen YM (2006) Synthesis and structural characterization of a single crystal of [Na2(H2O)10](NH4)3(NH3)[MoV9O28]. Synth React Inorg Met Org Nano-Met Chem 36:649–653

    Google Scholar 

  43. Wu QY, Wang X-F, Song Y-L (1998) The synthesis and crystal structure of novel heteropoly complex K3H2GeW8Mo3VO40·4H2O. Chem Res Chin Univ 19:934–937

    Google Scholar 

  44. Xu Y, Xu J-Q, Yang G-Y, Wang T-G, Xing Y, Lin Y-H, Jia H-Q (1998a) (NH4)2Na3(V3W3O19)⋅12H2O. Acta Crystallogr C 54:563–565

    Google Scholar 

  45. Xu Y, Xu J-Q, Yang G-Y, Xing Y, Lin Y-H, Jia H-Q (1998b) (NH4)4Na2[Mo2VIV2VV6O28]⋅10H2O. Acta Crystallogr C 54:1733–1735

    Google Scholar 

  46. Zema M, Ghigna P, Tarantino SC (2007) Low-alkali metal content in β-vanadium mixed bronzes: The crystal structures of β-Kx(V, Mo)6O15 (x=0.23 and 0.32) by single-crystal X-ray diffraction. J Solid State Chem 180:577–582

    Google Scholar 

Download references

Acknowledgements

We thank reviewers Irina O. Galuskina and Herta S. Effenberger for their valuable comments and Evgeny V. Galuskin and Nikita V. Chukanov for discussion. This work was supported by the Russian Science Foundation, Grant no. 19-17-00050. The technical support by the SPbSU X-Ray Diffraction Resource Center in the powder XRD study is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Igor V. Pekov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N. et al. Rhabdoborite-(V), rhabdoborite-(Mo) and rhabdoborite-(W): a new group of borate minerals with the general formula \({{\text{Mg}}_{12}} {M_{1\nicefrac{1}{3}}} {{\text{O}}_{6}}\)[(BO3)6–x(PO4)xF2–x] (M = V5+, Mo6+ or W6+ and x < 1). Phys Chem Minerals 47, 44 (2020). https://doi.org/10.1007/s00269-020-01105-7

Download citation

Keywords

  • Rhabdoborite-(V)
  • Rhabdoborite-(Mo)
  • Rhabdoborite-(W)
  • Rhabdoborite group
  • New mineral
  • Pertsevite
  • Crystal structure
  • Borate
  • Fumarole
  • Tolbachik volcano