Skip to main content
Log in

Insights into crystal chemistry of the vesuvianite-group: manaevite-(Ce), a new mineral with complex mechanisms of its hydration

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Manaevite-(Ce), a new vesuvianite-group mineral has been investigated by means of electron microprobe, TGA and DSC and CHN analysis of H2O, powder X-ray diffraction, single-crystal X-ray structure analysis, 139La NMR, 57Fe Mössbauer spectroscopy, IR spectroscopy and optical measurements. Tetragonal unit-cell parameters are a = 15.9247(13) Å, c = 11.9661(10) Å, space group P4/nnc. The structure model was solved and refined to R1 = 3.35% for 1757 independent observed reflections with I > 4σ(I). Manaevite-(Ce) is the first vesuvianite-group mineral with the species-defining role of REE3+ at the X3 site. The mineral contains two different kinds of hydroxyl anions. The first type of hydroxyl groups is associated with the O10 and O11 sites as observed for other vesuvianite-group members. Another type of OH groups is due to the hydrogarnet substitution (H4O4)4‒ ↔ (SiO4) 4‒ associated with the Z1 and Z2 sites. The incorporation of REE3+ into the crystal structure of manaevite-(Ce) proceeds via the substitution schemes 2Ca2+  ↔ Th4+ + □ and 3Ca2+  ↔ 2REE3+ + □, which results in the formation of vacancies at the X3 site and the presence of H2O molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aksenov SM, Chukanov NV, Rusakov VS et al (2016) Towards a revisitation of vesuvianite-group nomenclature: The crystal structure of Ti-rich vesuvianite from Alchuri, Shigar Valley, Pakistan. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. https://doi.org/10.1107/S2052520616010246

    Article  Google Scholar 

  • Allen FM, Burnham CW (1992) A comprehensive structure-model for vesuvianite: symmetry variations and crystal growth. Can Mineral 30:1–18

    Google Scholar 

  • Armbruster T, Gnos E (2000a) P4/n and P4nc long-range ordering in low-temperature vesuvianites. Am Mineral 85:563–569

    Article  Google Scholar 

  • Armbruster T, Gnos E (2000b) “Rod” polytypism in vesuvianite: crystal structure of a low-temperature P4nc vesuvianite with pronounced octahedral cation ordering. Schweizerische Mineral Und Petrogr Mitteilungen 80:109–116

    Google Scholar 

  • Armbruster T, Gnos E (2000c) Tetrahedral vacancies and cation ordering in low-temperature Mn-bearing vesuvianites: Indication of a hydrogarnet-like substitution. Am Mineral 85:570–577

    Article  Google Scholar 

  • Armbruster T, Gnos E, Dixon R et al (2002) Manganvesuvianite and tweddillite, two new Mn3+-silicate minerals from the Kalahari manganese fields, South Africa. Miner Mag 66:121–135. https://doi.org/10.1180/002646102661001

    Article  Google Scholar 

  • Batieva ID, Belkov IV, Bogdanova AN, Fedotova EP (1987) Rare-earth vesuvianite from alkaline gabbroids of the Saharyok massif (Kola Peninsula). Miner Assoc Miner Magmat Complexes Kola Penins 10–14

  • Bruker AXS (2009) Topas. General profile and structure analysis software for powder diffraction data

  • Bruker AXS (2014) APEX2 Version 2014.11-0. Madison, Wisconsin

  • Chatterjee ND (1962) Vesuvianite-epidote paragenesis as a product of greenschist facies of regional metamorphism in the Western Alps. Beiträge zur Mineral und Petrogr 8:432–439. https://doi.org/10.1007/BF01082095

    Article  Google Scholar 

  • Chukanov NV, Panikorovsky TL, Chervonnyi AD (2018) On the relationships between crystal-chemical characteristics of vesuvianite-group minerals and their IR spectra. Zap RMO 147:112–128

    Google Scholar 

  • Chukanov NV, Panikorovskii TL, Goncharov AG et al (2019) Milanriederite, (Ca, REE)19Fe3+Al4(Mg, Al, Fe3+)8Si18O68(OH, O)10, a new vesuvianite-group mineral from the Kombat Mine, Namibia. Eur J Mineral 31:637–646. https://doi.org/10.1127/ejm/2019/0031-2856

    Article  Google Scholar 

  • Coda A, Giusta DA, Isetti G, Mazzi F (1970) On the structure of vesuvianite. Atti dell Accad delle Sci di Torino 105:1–22

    Google Scholar 

  • Crook WW, Oswald SG (1979) New data on cerian vesuvianite from san Benito county, California. Am Mineral 64:367–368

    Google Scholar 

  • Dandekar P, Kuvadia ZB, Doherty MF (2013) Engineering crystal morphology. Annu Rev Mater Res 43:359–386. https://doi.org/10.1146/annurev-matsci-071312-121623

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1982) Rock-forming minerals. Orthosilicates, vol 1A. Longmans Green and co Ltd., London

    Google Scholar 

  • Dyrek K, Platonov AN, Sojka Z, Żabiński W (1992) Optical absorption and EPR study of Cu2+ ions in vesuvianite (“cyprine”) from Sauland, Telemark, Norway. Eur J Mineral 4:1285–1290. https://doi.org/10.1127/ejm/4/6/1285

    Article  Google Scholar 

  • Elmi C, Brigatti MF, Pasquali L et al (2011) High-temperature vesuvianite: crystal chemistry and surface considerations. Phys Chem Miner 38:459–468. https://doi.org/10.1007/s00269-011-0419-2

    Article  Google Scholar 

  • Fitzgerald S, Rheingold AL, Leavens PB (1986a) Crystal structure of a non-P4/nnc vesuvianite from Asbestos, Quebec. Am Mineral 71:1483–1488

    Google Scholar 

  • Fitzgerald S, Rheingold AL, Leavens PB (1986b) Crystal structure of a Cu-bearing vesuvianite. Am Mineral 71:1011–1014

    Google Scholar 

  • Fitzgerald S, Leavens PB, Rheingold AL, Nelen JA (1987) Crystal structure of a REE-bearing vesuvianite from San Benito County, California. Am Mineral 72:625–628

    Google Scholar 

  • Galuskin EV (2005) Mineraly Grupy wezuwianu ze skal achtarandytowych (rzeka Wiluj, Jakucja). Widawnictwo Uniwersytetu Slaskiego, Katowice

    Google Scholar 

  • Galuskin EV, Galuskina IO, Sitarz M, Stadnicka K (2003) Si-deficient, OH-substituted, boron-bearing vesuvianite from the Wiluy River, Yakutia, Russia. Can Mineral 41:833–842. https://doi.org/10.2113/gscanmin.41.4.833

    Article  Google Scholar 

  • Galuskin EV, Galuskina IO, Dzierżanowski P (2005) Chlorine in vesuvianites. Mineral Pol 36:51–61

    Google Scholar 

  • Galuskin EV, Galuskina IO, Stadnicka K et al (2007a) The crystal structure of Si-deficient, OH-substituted, boron-bearing vesuvianite from the Wiluy River, Sakha-Yakutia, Russia. Can Mineral 45:239–248. https://doi.org/10.2113/gscanmin.45.2.239

    Article  Google Scholar 

  • Galuskin EV, Janeczek J, Kozanecki M et al (2007b) Single-crystal Raman investigation of vesuvianite in the OH region. Vib Spectrosc 44:36–41. https://doi.org/10.1016/j.vibspec.2006.06.022

    Article  Google Scholar 

  • Giuseppetti G, Mazzi F (1983) The crystal structure of a vesuvianite with P4/n symmetry. Tschermaks Mineral und Petrogr Mitteilungen 31:277–288

    Article  Google Scholar 

  • Gnos E, Armbruster T (2006) Relationship among metamorphic grade, vesuvianite “rod polytypism” and vesuvianite composition. Am Mineral 91:862–870. https://doi.org/10.2138/am.2006.1973

    Article  Google Scholar 

  • Groat LA, Hawthorne FC, Ercit TS (1992a) The chemistry of Vesuvianite. Can Mineral 30:19–48

    Google Scholar 

  • Groat LA, Hawthorne FC, Ercit TS (1992b) The role of fluorine in vesuvianite: a crystal-structure study. Can Mineral 30:1065–1075

    Google Scholar 

  • Groat LA, Bismayer U, Güttler B (1995a) A ferroelastic phase transition in vesuvianite. Phase Transit 55:217–227. https://doi.org/10.1080/01411599508200435

    Article  Google Scholar 

  • Groat LA, Hawthorne FC, Rossman GR, Ercit TS (1995b) The infrared-spectroscopy of vesuvianite in the OH region. Can Mineral 33:609–626

    Google Scholar 

  • Groat LA, Hawthorne FC, Lager GA et al (1996) X-ray and neutron crystal-structure refinements of a boron-bearing vesuvianite. Can Mineral 34:1059–1070

    Google Scholar 

  • Groat LA, Hawthorne FC, Ercit TS, Grice JD (1998) Wiluite, Ca19(Al, Mg, Fe, Ti)13(B, Al,)5Si18O68(O, OH)10, a new mineral species isostructural with vesuvianite, from the Sakha Republic, Russian Federation: discussion. Can Mineral 36:1301–1304

    Google Scholar 

  • Groat LA, Evans RJ, Cempírek J et al (2013) Fe-rich and As-bearing vesuvianite and wiluite from Kozlov, Czech Republic. Am Mineral 98:1330–1337. https://doi.org/10.2138/am.2013.4358

    Article  Google Scholar 

  • Hålenius U, Bosi F, Gatedal K (2013) Crystal structure and chemistry of skarn-associated bismuthian vesuvianite. Am Mineral 98:566–573. https://doi.org/10.2138/am.2013.4310

    Article  Google Scholar 

  • Himmelberg GR, Miller TP (1980) Uranium- and thorium-rich vesuvianite from the Seward Peninsula, Alaska. Am Mineral 65:1020–1025

    Google Scholar 

  • Hochella MF, Liou JG, Keskinen MJ, Kim HS (1982) Synthesis and stability relations of magnesium idocrase. Econ Geol 77:798–808. https://doi.org/10.2113/gsecongeo.77.4.798

    Article  Google Scholar 

  • Ito J, Arem JE (1970) Idocrase: synthesis, phase relations and crystal chemistry. Am Mineral 55:880–912

    Google Scholar 

  • Ivanyuk GY, Yakovenchuk VN, Pakhomovsky YA (2002) Kovdor. Laplandia minerals, Apatity

  • Ivanyuk G, Kalashnikov A, Pakhomovsky Y et al (2017) Subsolidus evolution of the magnetite-spinel-ulvöspinel solid solutions in the kovdor phoscorite–carbonatite complex. NW Russia Minerals 7:215. https://doi.org/10.3390/min7110215

    Article  Google Scholar 

  • Kaverin SV, Krasnova NV, Tarasenko YN (1988) Mineralogy of apomellitic rocks of the Kovdor massif. In: Mineralogy and geochemistry. Issues of the genesis of endogenous deposits. Leningrad, pp 46–62

  • Kononova VA (1960) On a metamict variety of vesuvianite from an alkaline pegmatite in southwest Tuva. Dokl Acad Sci USSR 130:129–132

    Google Scholar 

  • Krivovichev SV (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineral Mag 77:275–326. https://doi.org/10.1180/minmag.2013.077.3.05

    Article  Google Scholar 

  • Krivovichev SV, Yakovenchuk VN, Panikorovskii TL et al (2019) Nikmelnikovite, Ca12Fe2+Fe3+3 Al3(SiO4)6(OH)20: a new mineral from the Kovdor Massif (Kola Peninsula, Russia). Dokl Earth Sci 488:1200–1202. https://doi.org/10.1134/S1028334X19100143

    Article  Google Scholar 

  • Kukharenko AA, Orlova MP, Bulakh AG et al (1965) The caledonian complex of ultrabasic, alkaline rocks and carbonatites of the Kola Peninsula and northern Karelia: geology, petrology, geochemistry and mineralogy. Nedra, Moscow

    Google Scholar 

  • Kurbatov SM (1946) Vesuvianite from USSR localities. Leningrad State University Publishers, Leningrad

    Google Scholar 

  • Li H, Ru J, Yin W et al (2009) Removal of phosphate from polluted water by lanthanum doped vesuvianite. J Hazard Mater 168:326–330. https://doi.org/10.1016/j.jhazmat.2009.02.025

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H O hydrogen bond lengths in minerals. Hydrog Bond Res 1059:103–115. https://doi.org/10.1007/978-3-7091-6419-8_7

    Article  Google Scholar 

  • Liu S (2016) Device for removing industrial rust, CN205576287U

  • Machatschki F (1932) Zur Formel des Vesuvian. Zeitschrift für Krist Cryst Mater 81:148–152. https://doi.org/10.1524/zkri.1932.81.1.148

    Article  Google Scholar 

  • Malczewski D, Dziurowicz M (2015) 222 Rn and 220 Rn emanations as a function of the absorbed α-doses from select metamict minerals. Am Mineral 100:1378–1385

    Article  Google Scholar 

  • Matsnev ME, Rusakov VS (2012) Program for processing and analysis of Mössbauer spectra: SpectrRelax. In: AIP Conference Proceedings Suzdal, pp 175–185

  • Mikhailova JA, Kalashnikov AO, Sokharev VA et al (2016) 3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia). Miner Depos 51:131–149. https://doi.org/10.1007/s00126-015-0594-z

    Article  Google Scholar 

  • Murdoch J, Ingram BL (1966) A cerian vesuvianite from California. Am Mineral 51:381–387

    Google Scholar 

  • Ohkawa M, Yoshiasa A, Takeno S (1992) Crystal chemistry of vesuvianite: site preferences of square-pyramidal coordinated sites. Am Mineral 77:945–953. https://doi.org/10.1144/gsjgs.155.2.0353

    Article  Google Scholar 

  • Olesch M (1979) Natürliche und synthetische Fe-haltige Vesuviane. Fortschr Mineral 57:114–115

    Google Scholar 

  • Orlov YL, Martyanov NN (1960) Rare earth vesuvian from the Yenisei Ridge. Work Mineral Mus 11:187–190

    Google Scholar 

  • Pabst A (1936) Vesuvianite from Georgetown, California. Am Mineral 21:1–10

    Google Scholar 

  • Panikorovskii TL, Krivovichev SV, Galuskin EV et al (2016a) Si-deficient, OH-substituted, boron-bearing vesuvianite from Sakha-Yakutia, Russia: a combined single-crystal, 1H MAS-NMR and IR spectroscopic study. Eur J Mineral 28:931–941. https://doi.org/10.1127/ejm/2016/0028-2570

    Article  Google Scholar 

  • Panikorovskii TL, Krivovichev SV, Yakovenchuk VN et al (2016b) Crystal chemistry of Na-bearing vesuvianite from fenitized gabbroid of the Western Keivy (Kola peninsula, Russia). Zap RMO 145:83–95

    Google Scholar 

  • Panikorovskii TL, Krivovichev SV, Zolotarev AAJ, Antonov AA (2016c) Crystal chemistry of low-symmetry (P4nc) vesuvianite from the Kharmankul’ Cordon (South Urals, Russia). Zap RMO 145:94–104

    Google Scholar 

  • Panikorovskii TL, Chukanov NV, Aksenov SM et al (2017a) Alumovesuvianite, Ca19Al(Al, Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, asbestos, Estrie region, Québec, Canada. Mineral Petrol 111:833–842. https://doi.org/10.1007/s00710-017-0495-1

    Article  Google Scholar 

  • Panikorovskii TL, Chukanov NV, Rusakov VS et al (2017b) Vesuvianite from the somma–vesuvius complex: new data and revised formula. Minerals 7:248. https://doi.org/10.3390/min7120248

    Article  Google Scholar 

  • Panikorovskii TL, Mazur AS, Bazai AV et al (2017c) X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature. Phys Chem Miner 44:577–593. https://doi.org/10.1007/s00269-017-0885-2

    Article  Google Scholar 

  • Panikorovskii TL, Shilovskikh VV, Avdontseva EY et al (2017d) Magnesiovesuvianite, Ca19Mg(Al, Mg)12Si18O69(OH)9, a new vesuvianite-group mineral. J Geosci (Czech Republic) 62:25–36. https://doi.org/10.3190/jgeosci.229

    Article  Google Scholar 

  • Panikorovskii TL, Shilovskikh VV, Avdontseva EY et al (2017e) Cyprine, Ca19Cu2+(Al, Mg, Mn)12Si18O69(OH)9, a new vesuvianite-group mineral from the Wessels mine, South Africa. Eur J Mineral 29:295–306. https://doi.org/10.1127/ejm/2017/0029-2592

    Article  Google Scholar 

  • Pavese A, Prencipe M, Tribaudino M, Aagaard SS (1998) X-ray and neutron single-crystal study of P4/n vesuvianite. Can Mineral 36:1029–1037

    Google Scholar 

  • Phillips BL, Allen FM, Kirkpatrick RJ (1987) High-resolution solid-state 27Al NMR spectroscopy of Mg-rich vesuyianite. Am Mineral 72:90–94

    Google Scholar 

  • Putz H, Brandernburg K (2014) Diamond: crystal and molecular structure visualization

  • Rivas-Mercury JM, Pena P, de Aza AH, Turrillas X (2008) Dehydration of Ca3Al2(SiO4)y(OH)4(3−y) (0%3cy%3c0.176) studied by neutron thermodiffractometry. J Eur Ceram Soc 28:1737–1748. https://doi.org/10.1016/j.jeurceramsoc.2007.12.038

    Article  Google Scholar 

  • Romer RL (1992) Vesuvianite-new tool for the U–Pb dating of skarn ore deposits. Mineral Petrol 46:331–341. https://doi.org/10.1007/BF01173571

    Article  Google Scholar 

  • Rusakov VS, Kovalchuk RV, Borovikova EY, Kurazhkovskaya V (2006) State of iron atoms in high vesuvianites according to Mössbauer spectroscopy data. Zap RMO 135:91–100

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  • Tanaka T, Akizuki M, Kudoh Y (2002) Optical properties and crystal structure of triclinic growth sectors in vesuvianite. Mineral Mag 66:261–274. https://doi.org/10.1180/0026461026620027

    Article  Google Scholar 

  • Trommsdorff V (1968) Mineralreaktionen mit Wollastonit und Vesuvian in einem Kalksilikatfels der alpinen Disthenzone (Claro, Tessin). Schweiz Miner Petrogr Mitt 48:655–666. https://doi.org/10.5169/seals-37788

    Article  Google Scholar 

  • Warren ΒE, Modell DI (1931) The structure of vesuvianite Ca10Al4(Mg, Fe)2Si9O34(OH)4. Cryst Mater 78:422–432. https://doi.org/10.1524/zkri.1931.78.1.422

    Article  Google Scholar 

  • Xiaoyan T, Suyu W, Yang Y et al (2015) Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chem Eng J 275:198–205. https://doi.org/10.1016/j.cej.2015.04.029

    Article  Google Scholar 

  • Yang C (2016) A kind of food waste disposal method and apparatus.

  • Żabiński W, Wacławska I, Paluszkiewicz C (1996) Thermal decomposition of vesuvianite. J Therm Anal 46:1437–1447. https://doi.org/10.1007/BF01979256

    Article  Google Scholar 

Download references

Acknowledgements

Thomas Armbruster and nonymous referee are thanked for critical reviews and helpful comments. This work was supported by the Russian Science Foundation (Grant No. 19-17-00038). The experimental studies were carried out using resources of the X-ray Diffraction Centre, Geo Environmental Centre “Geomodel” and Centre for Magnetic Resonance of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras L. Panikorovskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Supplementary file2 (CIF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseev, M.M., Panikorovskii, T.L., Aksenov, S.M. et al. Insights into crystal chemistry of the vesuvianite-group: manaevite-(Ce), a new mineral with complex mechanisms of its hydration. Phys Chem Minerals 47, 18 (2020). https://doi.org/10.1007/s00269-020-01086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01086-7

Keywords

Navigation