Experimental study of trivalent rare-earth element incorporation in CaTiO3 perovskite: evidence for a new substitution mechanism

Abstract

Samples of calcium titanate perovskite (CaTiO3) substituted with variable amounts of trivalent La, Pr, Nd or Sm were synthesized by solid-state reaction. The synthesized compounds were characterized by means of electron microprobe (EMPA), powder X-ray diffraction and µ-Raman spectroscopy. The incorporation of the studied lanthanides in the CaTiO3 perovskite leads to the formation of complex (Ca1-2xLn2x)(Ti1-xCax)O3 perovskites with a Pbnm disordered structure. This mechanism was revealed by the Ca/Ti ratio analyses of the samples, the study of the lattice parameter evolution and the Raman A1g octahedral breathing mode frequency comparison for all systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Animitsa I, Iakovleva A, Belova K (2016) Electrical properties and water incorporation in A-site deficient perovskite La1-xBaxNb3O9-0.5x. J Solid State Chem 238:156–161. https://doi.org/10.1016/j.jssc.2016.03.023

    Article  Google Scholar 

  2. Aroyo MI, Kirov A, Capillas C, Perez-Mato JM, Wondratschek H (2006) Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr Sect A. https://doi.org/10.1107/S0108767305040286

    Article  Google Scholar 

  3. Aroyo MI, Perez-Mato JM, Orobengoa D, Tasci E, De La Flor G, Kirov A (2011) Crystallography online: bilbao crystallographic server. Bull Chem Commun. https://doi.org/10.1107/S205327331303091X

    Article  Google Scholar 

  4. Bassoli M, Buscaglia MT, Bottino C, Buscaglia V, Molinari M, Maglia F, Dapiaggi M (2008) Defect chemistry and dielectric properties of Yb3+: CaTiO3 perovskite. J Appl Phys 103(2008):14104. https://doi.org/10.1063/1.2828149

    Article  Google Scholar 

  5. Carvajal JR (1990) FULLPROF: a program for Rietveld refinement and pattern matching analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr

  6. Cherniak DJ, Hanchar JM, Watson EB (1997) Rare-earth diffusion in zircon. Chem Geol 134(4):289–301. https://doi.org/10.1016/S0009-2541(96)00098-8

    Article  Google Scholar 

  7. Chi F, Qin Y, Zhou S, Wei X, Chen Y, Duan C, Yin M (2017) Eu3+-site occupation in CaTiO3 perovskite material at low temperature. Curr Appl Phys 17(1):24–30. https://doi.org/10.1016/j.cap.2016.10.018

    Article  Google Scholar 

  8. Dawson JA, Li X, Freeman CL, Harding JH, Sinclair DC (2013) The application of a new potential model to the rare-earth doping of SrTiO3 and CaTiO3. J Mater Chem C 1(8):1574. https://doi.org/10.1039/c2tc00475e

    Article  Google Scholar 

  9. de Figueiredo AT, Longo VM, de Lazaro S, Mastelaro VR, De Vicente FS, Hernandes AC, Longo E (2007) Blue-green and red photoluminescence in CaTiO3:Sm. J Lumin 126(2):403–407. https://doi.org/10.1016/j.jlumin.2006.08.100

    Article  Google Scholar 

  10. Dernier PD, Maines RG (1971) High pressure synthesis and crystal data of the rare earth orthoaluminates. Mater Res Bull 6(1):433–440

    Article  Google Scholar 

  11. Fomichev VV (1994) The vibrational spectra of complex oxides with a perovskite-type structure. Russ Chem Bull 43(12):1943–1952. https://doi.org/10.1007/BF00700151

    Article  Google Scholar 

  12. Gillet P, Guyot F, Price GD, Tournerie B, Le Cleach A (1993) Phase changes and thermodynamic properties of CaTiO3. Spectroscopic data, vibrational modelling and some insights on the properties of MgSiO3 perovskite. Phys Chem Miner 20(3):159–170. https://doi.org/10.1007/bf00200118

    Article  Google Scholar 

  13. Goethals J, Fourdrin C, Tarrida M, Bedidi A, Hatert F, Rossano S (2018) Structural investigations of neodymium incorporation in calcium stannate perovskite CaSnO3. Phys Chem Miner. https://doi.org/10.1007/s00269-018-0993-7

    Article  Google Scholar 

  14. Guennou M, Bouvier P, Krikler B, Kreisel J, Haumont R, Garbarino G (2010) High-pressure investigation of CaTiO3 up to 60 GPa using x-ray diffraction and Raman spectroscopy. Phys Rev. https://doi.org/10.1103/physrevb.82.134101

    Article  Google Scholar 

  15. Guyot F, Richet P, Courtial P, Gillet P (1993) High-temperature heat capacity and phase transitions of CaTiO3 perovskite. Phys Chem Miner 20(3):141–146. https://doi.org/10.1007/BF00200116

    Article  Google Scholar 

  16. Gyu M, Rang M, Eun T, Seong J, Kim Y (2012) Sm3 + doped CaTiO3 phosphor: synthesis, structure, and photoluminescent properties. Ceram Int 38(2):1365–1370. https://doi.org/10.1016/j.ceramint.2011.09.015

    Article  Google Scholar 

  17. Huang G, Dong W, Fang L, Zheng F, Shen M (2011) Effects of Eu- doping site on structural and photoluminescent properties of CaTiO3 particles. J Adv Dielectr 01(02):215–221. https://doi.org/10.1142/S2010135X11000239

    Article  Google Scholar 

  18. Kchikech M, Maglione M (1994) Electronic and lattice excitations in BaTiO3:La. J Phys 6(46):10159. Retrieved from http://stacks.iop.org/0953-8984/6/i=46/a=031

    Google Scholar 

  19. Kiran SR, Babu GS, Narayana C, Murthy VRK, Subramanian V (2013) Long range B-site cation ordering and Briet-Wigner-Fano line shape of A1g-like Ramanmode in Nd1-xSmx(Mg 0.5Ti0.5)O3 microwave dielectric ceramics. Mater Res Bull 48(2):194–199. https://doi.org/10.1016/j.materresbull.2012.09.056

    Article  Google Scholar 

  20. Larson EM, Eller PG, Purson JD, Pace CF, Eastman MP, Greegor RB, Lytle FW (1988) Synthesis and structural characterization of CaTiO3 doped with 0.05–7.5 mol% gadolinium(III). J Solid State Chem. 73(2):480–487. https://doi.org/10.1016/0022-4596(88)90134-x

    Article  Google Scholar 

  21. Lemanov VV, Sotnikov AV, Smirnova EP, Weihnacht M, Kunze R (1999) Perovskite CaTiO3 as an incipient ferroelectric. Solid State Commun 110(11):611–614. https://doi.org/10.1016/S0038-1098(99)00153-2

    Article  Google Scholar 

  22. Levin I, Cockayne E, Lufaso MW, Woicik JC, Maslar JE (2006) Local structures and Raman spectra in the Ca(Zr, Ti)O3 perovskite solid solutions. Chem Mater 18(3):854–860. https://doi.org/10.1021/cm0523438

    Article  Google Scholar 

  23. Liegeois-Duyckaerts M, Tarte P (1974) Vibrational studies of molybdates, tungstates and related c compounds-III. Ordered cubic perovskites A2BIIBVIO6. Spectrochim Acta Part A 30(9):1771–1786. https://doi.org/10.1016/0584-8539(74)80128-5

    Article  Google Scholar 

  24. Lowndes R, Deluca M, Azough F, Freer R (2013) Probing structural changes in Ca(1−x)Nd2x/3TiO3 ceramics by Raman spectroscopy. J Appl Phys 113(4):044115. https://doi.org/10.1063/1.4789601

    Article  Google Scholar 

  25. Lufaso MW, Woodward PM (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallogr Sect B 57(6):725–738. https://doi.org/10.1107/S0108768101015282

    Article  Google Scholar 

  26. Mazzo TM, Moreira ML, Pinatti IM, Picon FC, Leite ER, Rosa ILV, Longo E (2010) CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: a photoluminescent approach. Opt Mater 32(9):990–997. https://doi.org/10.1016/j.optmat.2010.01.039

    Article  Google Scholar 

  27. McMillan P, Ross N (1988) The Raman spectra of several orthorhombic calcium oxide perovskites. Phys Chem Miner 16(1):21–28. https://doi.org/10.1007/BF00201326

    Article  Google Scholar 

  28. Moraes APA, Filho AGS, Freire PTC, Filho JM, M’Peko JC, Hernandes AC, Paraguassu W (2011) Structural and optical properties of rare earth–doped (Ba0.77Ca0.23)1 − x(Sm, Nd, Pr, Yb)xTiO3. J Appl Phys 109(12):124102. https://doi.org/10.1063/1.3594710

    Article  Google Scholar 

  29. Moreira RL, Khalam LA, Sebastian MT, Dias A (2007) Raman-spectroscopic investigations on the crystal structure and phonon modes of Ba(RE1/2Ta1/2)O3microwave ceramics. J Eur Ceramic Soc 27(8–9 SPEC. ISS.):2803–2809. https://doi.org/10.1016/j.jeurceramsoc.2006.11.056

    Article  Google Scholar 

  30. Moreira ML, Paris EC, do Nascimento GS, Longo VM, Sambrano JR, Mastelaro VR, Longo E (2009) Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight. Acta Mater 57(17):5174–5185. https://doi.org/10.1016/j.actamat.2009.07.019

    Article  Google Scholar 

  31. Morrison FD, Sinclair DC, West AR (1999) Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J Appl Phys 86(11):6355–6366. https://doi.org/10.1063/1.371698

    Article  Google Scholar 

  32. Ning F, Gan L, Yuan S, Qi Z, Jiang J, Zhang T (2017) Correlation between vibrational modes of A-site ions and microwave dielectric properties in (1–x) CaTiO3 − x (Li0.5Sm0.5)TiO3 ceramics. J Alloy Compd 729:742–748. https://doi.org/10.1016/j.jallcom.2017.09.198

    Article  Google Scholar 

  33. Ribeiro GK, Vicente FS, Bernardi MIB, Mesquita A (2016) Short-range structure and photoluminescent properties of the CaTiO3:Pr, La phosphor. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2016.07.090

    Article  Google Scholar 

  34. Ringwood AE, Kesson SE, Ware NG, Hibberson W, Major A (1979) Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 278(5701):219–223. https://doi.org/10.1038/278219a0

    Article  Google Scholar 

  35. Ross NL, Angel RJ (1999) Compression of CaTiO3 and CaGeO3 perovskites. Am Miner 84(3):277–281

    Article  Google Scholar 

  36. Sakaida S, Shimokawa Y, Asaka T, Honda S, Iwamoto Y (2015) Synthesis and characterization of Eu3+-doped CaZrO3-based perovskite-type phosphors. Part I: determination of the Eu3+ occupied site using the ALCHEMI technique. Mater Res Bull 67:146–151. https://doi.org/10.1016/j.materresbull.2015.02.043

    Article  Google Scholar 

  37. Santosh Babu G (2008) Structural, lattice vibrational and microwave dielectric studies on some rare earth based complex perovskites. Indian Institute of Technology Madras Chennai, Chennai

    Google Scholar 

  38. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis HHS public access. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  39. Shannon RD, Prewitt CT (1970) Revised values of effective ionic radii. Acta Crystallogr Sect B. https://doi.org/10.1107/S0567740870003576

    Article  Google Scholar 

  40. Siny IG, Tao R, Katiyar RS, Guo R, Bhalla AS (1997) Raman spectroscopy of Mg-Ta order-disorder in BaMg1/3Ta2/3O3. J Phys Chem Solids 59(2):181–195. https://doi.org/10.1016/S0022-3697(97)00154-6

    Article  Google Scholar 

  41. Tsur Y, Dunbar TD, Randall CA (2001) Crystal and defect chemistry of rare earth cations in BaTiO3. J Electroceram 7(1):25–34. https://doi.org/10.1023/A:1012218826733

    Article  Google Scholar 

  42. Vance E, Day R, Zhang Z, Begg B, Ball C, Blackford M (1996) Charge compensation in Gd-doped CaTiO3. J Solid State Chem 124(1):77–82. https://doi.org/10.1006/jssc.1996.0210

    Article  Google Scholar 

  43. Vance ER, Begg BD, Hanna JV, Luca V, Hadley JH, Hsu FH (2012a) Charge Compensation in Ca(La)TiO3 Solid Solutions. Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries X (). Wiley, Hoboken, pp 199–206. https://doi.org/10.1002/9781118408438.ch19

    Google Scholar 

  44. Vance ER, Hanna JV, Hadley JH (2012b) Cation vacancies in perovskites doped with La and Gd. Adv Appl Ceram 111(1–2):94–98. https://doi.org/10.1179/1743676111Y.0000000037

    Article  Google Scholar 

  45. Zulueta YA, Lim T-C, Dawson JA (2017) Defect clustering in rare-earth-doped BaTiO3 and SrTiO3 and its influence on dopant incorporation. J Phys Chem C 121(42):23642–23648. https://doi.org/10.1021/acs.jpcc.7b08500

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jean Didier Mertz from the Laboratoire de Recherches des Monuments Historiques (LRHM) for XRD measurements. We also thank Omar Boudouma and Michel Fialin for SEM and EMPA measurements (ISTeP). We are grateful to the two anonymous reviewers and the editorial team for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jules Goethals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goethals, J., Bedidi, A., Fourdrin, C. et al. Experimental study of trivalent rare-earth element incorporation in CaTiO3 perovskite: evidence for a new substitution mechanism. Phys Chem Minerals 46, 1003–1015 (2019). https://doi.org/10.1007/s00269-019-01058-6

Download citation

Keywords

  • CaTiO3
  • Lanthanide
  • Substitution mechanism
  • Raman spectroscopy
  • XRD