Titanium local coordination environments in Cretaceous–Paleogene and Devonian–Carboniferous boundary sediments as a possible marker for large meteorite impact

Abstract

The local coordination environments of Ti in Cretaceous–Paleogene (K–Pg) from Stevns Klint and Devonian–Carboniferous (D–C) boundary from western part of Cat Co Beach on Cat Ba Island sediments are studied by K-edge X-ray absorption fine structure (XAFS) in order to provide local atomic information by X-ray absorption near edge structure (XANES) and coordination environments by extended X-ray absorption fine structure (EXAFS). Ti K-edge XAFS spectra in bulk part of K–Pg and D–C boundary sediments are compared with those of reference materials such as TiO2 (rutile, anatase and brookite polymorph), CaTiO3, MgTiO3, SrTiO3, PbTiO3, moldavite-brownish, moldavite-green, suevite from Ries crater, impactite, obsidian and Kilauea volcanic glass. The shapes of XANES and EXAFS spectra in K–Pg sediments are similar to those in suevite. Suevite was formed under meteorite impact and its glass component was formed under high temperature and high pressure. Similarities of XANES and EXAFS between K–Pg sediments and suevite indicate that formation process of K–Pg sediments is related to a meteorite impact event. On the other hand, the shape of XANES spectrum in D–C sediments is similar to those in anatase and obsidian. However, the shape of EXAFS spectra in D–C sediments is similar to those in obsidian, rather than anatase. Coordination environments of Ti in D–C sediments suggest that the original glass-like local environments were changed to anatase-like local environments by devitrification. This leads to the conclusion that the analysis of the atomic coordination environments of Ti in boundary sediments can in principle be used as a marker of large meteorite impact, though this Ti local environmental information is actually lost due to the devitrification phenomenon to anatase by quenching process or long-time diagenesis. This may be compensated by the XAFS analysis of Zr because local coordination environments of Zr in same analytical point of K–Pg sediments were not affected by diagenesis (Tobase et al., J Miner Petrol Sci 110:88–91, 2015a).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  2. Belza J, Goderis S, Smit J, Vanhaecke F, Baert K, Terryn H, Claeys F (2015) High spatial resolution geochemistry and textural characteristics of ‘microtektite’ glass spherules in proximal Cretaceous–Paleogene sections: Insights into glass alteration patterns and precursor melt lithologies. Geochim Cosmochim Acta 152:1–38

    Article  Google Scholar 

  3. Belza J, Goderis S, Montanari A, Vanhaecke F, Claeys P (2017) Petrography and geochemistry of distal spherules from the K–Pg boundary in the Umbria-Marche region (Italy) and their origin as fractional condensates and melts in the Chicxulub impact plume. Geochim Cosmochim Acta 202:231–263

    Article  Google Scholar 

  4. Bohor BF, Foord EE, Modreski PJ, Triplehorn DM (1984) Mineralogic evidence for an impact event at the cretaceous-tertiary boundary. Science 224:867–869

    Article  Google Scholar 

  5. Bohor BF, Morreski PJ, Foord EE (1987) Shocked quartz in the Cretaceous-Tertiary boundary clays: evidence for a global distribution. Science 236:705–709

    Article  Google Scholar 

  6. Bralower TJ, Paull CK, Leckie RM (1998) The Cretaceous-Tertiary boundary cocktail: chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology 26:331–334

    Article  Google Scholar 

  7. Claeys P, Casier J, Margolis SV (1992) Mircotektites and mass extinctions: evidence for a late devonian asteroid impact. Science 257:1102–1104

    Article  Google Scholar 

  8. Claoué-Long JC, Jones PJ, Roberts J (1992) The age of the Devonian-Carboniferous boundary. Annal Soc Géol Belg 115:531–549

    Google Scholar 

  9. Drits VA, Lindgreen H, Sakharov BA, Jakobsen HJ, Zviagina BB (2004) The detailed structure and origin of clay minerals at the Cretaceous/Tertiary boundary, Stevns Klint (Denmark). Clay Miner 39:367–390

    Article  Google Scholar 

  10. Engelhardt VW (1997) Suevite breccia of the Ries impact crater, Germany: petrography, chemistry and shock metamorphism of crystalline rock clasts. Meteor Planet Sci 32:545–554

    Article  Google Scholar 

  11. Farges F, Brown GE (1997) Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure. Geochim Cosmochim Acta 61:1863–1870

    Article  Google Scholar 

  12. Farges F, Brown GE, Rehr JJ (1996a) Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochim Cosmochim 60:3023–3038

    Article  Google Scholar 

  13. Farges F, Brown GE, Navrotsky A, Gan H, Rehr JJ (1996b) Coordination chemistry of Ti (IV) in silicate glasses and melts: II, Glasses at ambient temperature and pressure. Geochim Cosmochim Acta 60:3039–3053

    Article  Google Scholar 

  14. Farges F, Brown GE, Navrotsky A, Gan H, Rehr JR (1996c) Coordination chemistry of Ti (IV) in silicate glasses and melts: III. Glasses and melts from ambient to high temperatures. Geochem Cosmochim Acta 60:3055–3065

    Article  Google Scholar 

  15. Fortey R (1999) Life: an unauthorized biography: a natural history of the first four thousand million years of life on earth. Flamingo, London, pp 238–260

    Google Scholar 

  16. Galoisy L, Calas G (1993) Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states. Geochem Cosmochim Acta 57:3613–3626

    Article  Google Scholar 

  17. Gao C, Liu Y, Zong K, Hu Z, Gao S (2010) Microgeochemistry of rutile and zircon in eclogites from the CCSD main hole: implication for the fluid activity and thermo-history of the UHP metamorphism. Lithos 115:51–64

    Article  Google Scholar 

  18. Gilmour I, Anders BB (1989) Cretaceous–Paleogene boundary event: evidence for a short time scale. Geochim Cosmochim Acta 53:503–511

    Article  Google Scholar 

  19. Greegor RB, Sandstrom DR, Wong J, Schultz P (1983) Investigation of TiO2–SiO2 glasses by X-ray absorption spectroscopy. J non-cryst solids 55:27–43

    Article  Google Scholar 

  20. Guenter JR, Jameson GB (1984) Orthorhombic barium orthotitanate, α‘-Ba2TiO4. Acta Crystallogr C40:207–210

    Google Scholar 

  21. Guili G, Eeckhout SG, Paris E, Koeberl C, Pratesi G (2005) Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy. Meteorit Planet Sci 40:1575–1580

    Article  Google Scholar 

  22. Guili G, Eeckhout SG, Koeberl C, Pratesi G, Paris E (2008) Yellow impact glass from the K/T boundary at Beloc (Haiti): XANES determination of Fe oxidation state and implications for conditions. Meteorit Planet Sci 43:981–986

    Article  Google Scholar 

  23. Hiratoko T, Yoshiasa A, Nakatani T, Okube M, Nakatsuka A, Sugiyama K (2013) Temperature dependence of pre-edge features in Ti K-edge spectra for ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase. J Synchr Radiat 20:641–643

    Article  Google Scholar 

  24. Hoppe R (1970) The Coordination Number—an “Inorganic Chameleon”. Angew Chem Int Edit 9:25–34

    Article  Google Scholar 

  25. Hoppe R (1979) Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeit Kristallogr 150:23–52

    Article  Google Scholar 

  26. Horn M, Schwerdtfeger CF, Meagher EP (1972) Refinement of the structure of anatase at seeral temperatures. Zeit Kristallogr 136:273–281

    Article  Google Scholar 

  27. International Union of Crystallography Report of the Executive Committee for 1991 (1992) Acta Crystallogr A 48:922–946

    Article  Google Scholar 

  28. Izett GA (1991) Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alavarez impact extinction hypothesis. J Geophys Res 96:20879–20905

    Article  Google Scholar 

  29. Koeberl C (1992) Water content of glasses from the K/T boundary, Haiti: indicative of impact origin. Geochim Cosmochim Acta 56:4329–4332

    Article  Google Scholar 

  30. Koeberl C, Sigurdsson H (1992) Geochemistry of impact glasses from the K/T boundary in Haiti: relation to smectites, and a new type of glass. Geochim Cosmochim Acta 56:2113–2129

    Article  Google Scholar 

  31. Komatsu T, Takashima R, Naruse H, Phuong TH, Dang TH, Nguyen DP, Dinh CT, Ho TC, Tran TV, Kato S, Maekawa T (2012a) Devonian-Carboniferous transition in the Pho Han Formation on Cat Ba Island, northeastern Vietnam. J Geol Soc Jpn 118:V–VI

    Article  Google Scholar 

  32. Komatsu T, Takashima R, Phuong TH, Dang TH, Nguyen DP, Nguyen HH, Kato S, Hirata K, Maekawa T (2012b) Devonian to Carboniferous transitional beds on Cat Ba Island, northeastern Vietnam—a preliminary assessment. Acta Geosci Sinica suppl 33:38

    Google Scholar 

  33. Komatsu T, Kato S, Hirata K, Takashima R, Ogata Y, Oba M, Naruse H, Ta HP, Nguyen DP, Dang TH, Doan NT, Nguyen HH, Sakata S, Kaiho K, Konigshof P (2014) Devonian-Carboniferous transition a Hangenberg Black Shale equivalent in the Pho Han Formation on Cat Ba Island, Northeastern Vietnam. Palaeogeogr Palaeoclimatol Palaeoecol 404:30–43

    Article  Google Scholar 

  34. Kring DA, Boynton WV (1991) Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti. Geochim Cosmochim Acta 55:1737–1742

    Article  Google Scholar 

  35. Li Y, Ishigaki T (2002) Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt. J Cryst Growth 242:511–516

    Article  Google Scholar 

  36. Lytle FW, Greegor RB (1988) Discussion of X-ray-absorption near-edge structure: application to Cu in the high-Tc superconductors La1.8Sr0.2CuO4 and YBa2CuO7. Phys Rev B 37:1550–1562

    Article  Google Scholar 

  37. Maeda H (1987) Accurate bond length determination by EXAFS method. J Phys Soc Jpn 56:2777–2787

    Article  Google Scholar 

  38. Martínez-Ruiz F, Ortega-Huertas M, Palomo-Delgado I, Smit J (2001) K-T boundary spherules from Blake Nose (ODP Leg 171B) as a record of the Chicxulub ejecta deposits. Geol Soc Lond 183:149–161

    Article  Google Scholar 

  39. Miyano Y, Yoshiasa A, Tobase T, Isobe H, Hongu H, Okube M, Nakatsuka A, Sugiyama K (2016) Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K–Pg boundary clays from Stevns Klint. J Phys Confer Ser 712:012097

    Article  Google Scholar 

  40. Mysen B, Neuville D (1995) Effect of temperature and TiO2 content on the structure of Na2Si2O5-Na2Ti2O5 melts and glass. Geochim Cosmochim Acta 59:325–342

    Article  Google Scholar 

  41. Nespolo M, Guillot B (2016) CHARDI2015: charge Distribution analysis of non-molecular structures. J Appl Crystallogr 49:317–321

    Article  Google Scholar 

  42. Nickel EH, Grice JD (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature. Can Mineral 36:14

    Google Scholar 

  43. Officer CB, Drake CL (1985) Terminal Cretaceous environmental events. Science 227:1161–1167

    Article  Google Scholar 

  44. Okube M, Sasaki S, Yoshiasa A, Wang L, Nakatani T, Hongu H, Murai K, Nakatsuka A, Miyawaki R (2012) Local structure of Zn in Cretaceous–Paleogene boundary clay from Stevns Klint. J Miner Petrol Sci 107:192–196

    Article  Google Scholar 

  45. Paris E, Dingwell DB, Seifert FA, Mottana A, Romano C (1994) Pressure-induced coordination change of Ti in silicate glass: a XANES study. Phys Chem Miner 21:520–525

    Google Scholar 

  46. Penn RL, Banfield JF (1999) Formation of rutile nuclei at anatase (112) twin interfaces and the phase transformation mechanism in nanocrystalline titania. Am Miner 84:871–876

    Article  Google Scholar 

  47. Rampino MR, Reynolds RC (1983) Clay mineralogy of the Cretaceous-Tertiary boundary clay. Science 219(4584):495–498

    Article  Google Scholar 

  48. Raup D, Sepkoski J Jr (1982) Mass extinctions in the marine fossil record. Science 215(4539):1501–1503

    Article  Google Scholar 

  49. Rehr JJ, Mustre de Leon J, Zabinsky SI, Albers RC (1991) Theoretical X-ray absorption fine structure standards. J Am Chem Soc B 113:5135–5140

    Article  Google Scholar 

  50. Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell DS III, Morgan LE, Mundil R, Smit J (2013) Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. Science 339:684–687

    Article  Google Scholar 

  51. Sakai S, Yoshiasa A, Arima H, Okube M, Numako C, Sato T (2007) XAFS study of as in KT boundary clays. AIP Conf Proc 882:274

    Article  Google Scholar 

  52. Schmitz B (1992) Chalcophile elements and Ir in continental Cretaceous–Paleogene boundary clays from the western interior of the USA. Geochim Cosmochim Acta 56:1695–1703

    Article  Google Scholar 

  53. Sepkoski JJ Jr (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy in the phanerozoic. Springer, Berlin, pp 35–51

    Google Scholar 

  54. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr A32:751–767

    Article  Google Scholar 

  55. Sigurdsson H, D’Hondt S, Arthur MA, Bralower TJ, Zachos JC, van Fossen M, Channell ET (1991a) Glass from the Cretaceous/Tertiary boundary in Haiti. Nature 349:482–487

    Article  Google Scholar 

  56. Sigurdsson H, Bonte P, Turpin L, Chaussidon M, Metrich N, Steinberg M, Pradel P, D’Hondt S (1991b) Geochemical constraints on source regions of Cretaceous/Tertiary impact glasses. Nature 353:839–842

    Article  Google Scholar 

  57. Smit J, Montanari A, Swinburne NHM, Alvarez W, Hildebrand AR, Margolis AR, Claeys P, Lowrie W, Asaro F (1992) Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology 20:99–103

    Article  Google Scholar 

  58. Stebbins JF, McMillan P (1989) Five- and six- coordinated Si in K2Si4O9 glass quenched from 1.9 GPa and 1200 °C. Am Mineral 74:965–968

    Google Scholar 

  59. Stöffler D, Grieve RAF (1994) Classification and nomenclature of impact metamorphic rocks: a proposal to the IUGS subcommision on the systematics of metamorphic rocks. Abstr 25th Lunar Planet Sci Confer  1347

  60. Strong CP, Brooks RR, Wilson SM, Reeves RD, Orth CJ, Mao XY, Quintana LR, Anders E (1987) A new Cretaceous–Paleogene boundary site at Flaxbourne River, New Zealand: biostratigraphy and geochemistry. Geochim Cosmochim Acta 51:2769–2777

    Article  Google Scholar 

  61. Tobase T, Yoshiasa A, Wang L, Hiratoko T, Hongu H, Okube M, Sugiyama K (2015a) XAFS study of Zr in Cretaceous-Tertiary boundary clays from Stevns Klint. J Miner Petrol Sci 110:88–91

    Article  Google Scholar 

  62. Tobase T, Yoshiasa A, Wang L, Hiratoko T, Hongu H, Isobe H, Miyawaki R (2015b) XAFS study on the Zr local structure in tektites and natural glasses. J Miner Petrol Sci 110:1–7

    Article  Google Scholar 

  63. Tsukimura K, Nakazawa H (1994) Research proposal of the materials formed on the earth’s surface. J Miner Soc Jpn 23:77–81 (in Japanese)

    Google Scholar 

  64. Wang L, Yoshiasa A, Okube M, Takeda T (2011) Titanium local structure in tektite probed by X-ray absorption fine spectroscopy. J Synchrotron Radiat 18:885–890

    Article  Google Scholar 

  65. Wang L, Yoshiasa A, Okube M, Nakatani T, Hayasaka Y, Isobe H (2013) Local structure of Titanium in natural glasses probed by X-ray absorption fine structure. J Phys Confer Ser 430:012121

    Article  Google Scholar 

  66. Werthmann R, Hoppe R (1985) Ein neues einfaches Ttitanat: KNaTiO3. Z anorg allg Chem 523:54–62

    Article  Google Scholar 

  67. White RV, Saunders AD (2005) Volcanism, impact and mass extinction: incredible or credible coincidences? Lithos 79:299–316

    Article  Google Scholar 

  68. Wu KK, Brown ID (1973) The crystal structure of α-barium orthotitanate, α-Ba2TiO4, and the bond strength-bond length curve of Ti–O. Acta Crystallogr B29:2009–2012

    Article  Google Scholar 

  69. Yarger JL, Diefenbacher J, Smith KH, Wolf GH, Poe B, McMillan PF (1995) Al3+ coordination changes in high pressure aluminosilicate liquids. Science 270:1964–1967

    Article  Google Scholar 

  70. Yarker CA, Johnson PAV, Wright AC, Wong JB, Greegor RB, Lytle FW, Siclair RN (1986) Neutron diffraction and exafs evidence for TiO2 units in vitreous. J Non-Cryst Solids 79:117–136

    Article  Google Scholar 

  71. Yau YC, Peacor DR, Essene EJ (1987) Authigenic anatase and titanite in shales from the Salton Sea geo thermal field. Neues Jb Miner Monat 10:441–452

    Google Scholar 

  72. Yoshiasa A, Koto K, Maeda H, Ishii T (1997) The mean-square relative displacement and displacement correlation functions in tetrahedrally and octahedrally coordinated ANB8–N crystals. Jpn J Appl Phys 36:781–784

    Article  Google Scholar 

  73. Yoshiasa A, Nagai T, Ohtaka O, Kamishima O, Shimomura O (1999) Pressure and temperature dependence of EXAFS Debye-Waller factors in diamond-type and white-tin-type germanium. J Synchrotron Radiat 6:43–49

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed within the Photon Factory Project PAC No. 2012G526, and financially supported by the JSPS-VAST Joint Research Program and a Grant-in-Aid from the Japan Society for Promotion of Science (25400500 and 16K05593 to Komatsu) and JSPS Grant-in-Aid for JSPS Research (JP16J10062 to Tobase).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsubasa Tobase.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tobase, T., Yoshiasa, A., Komatsu, T. et al. Titanium local coordination environments in Cretaceous–Paleogene and Devonian–Carboniferous boundary sediments as a possible marker for large meteorite impact. Phys Chem Minerals 46, 675–685 (2019). https://doi.org/10.1007/s00269-019-01030-4

Download citation

Keywords

  • Ti coordination environments
  • K–Pg boundary sediments
  • D–C boundary sediments
  • EXAFS
  • XANES