Skip to main content
Log in

Color mechanisms in spinel: a multi-analytical investigation of natural crystals with a wide range of coloration

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Twenty natural spinel single crystals displaying colors almost representative for the entire spinel variability were investigated by electron microprobe and UV–VIS–NIR–MIR and FTIR spectroscopies. Eight of them, selected among the Fe-bearing ones, were also analyzed by X-ray diffraction, and five by Mössbauer spectroscopy to obtain information on the oxidation state and site distribution of Fe. The adopted multi-analytical approach was successful in revealing that the color displayed by aluminate spinel crystals is due to a combination of two or more minor transition elements acting as chromophore, such as V3+, Cr3+, Fe2+, Fe3+, Mn2+ and Mn3+, variably distributed in the tetrahedrally and octahedrally coordinated sites of the spinel structure. Iron-poor orange, red and magenta spinel crystals owe their color mainly to the presence of V3+ and Cr3+ at the M sites (with predominance of V3+ for orange and of Cr3+ for red color). Iron-rich pink, blue and green spinel crystals, in spite of exhibiting very different colors, have relatively similar optical absorption spectra characterized by a strong UV-edge absorption and a series of weak absorption bands in the visible range. From pink to blue and green spinel samples, color differences depend on the increase of Fetot (primarily) and Fe3+ contents (secondarily), which are responsible for both the intensification of UV-edge absorption and the different intensity, width and position of the prominent absorption bands occurring in the range 18,000−15,000 cm−1. The scarcity in nature of yellow spinel is explained by the rarity of conditions necessary to obtain the yellow color, such as the exclusive presence of Mn acting as a chromophore or at least the absence of Fe2+, to avoid masking of the weak electronic transitions in Fe3+, Mn2+ and Mn3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreozzi GB, Princivalle F, Skogby H, Della Giusta A (2000) Cation ordering and structural variations with temperature in MgAl2O4 spinel: an X-ray single-crystal study. Am Miner 85(9):1164–1171

    Article  Google Scholar 

  • Andreozzi GB, Hålenius U, Skogby H (2001a) Spectroscopic active IVFe3+VIFe3+ clusters in spinel–magnesioferrite solid solution crystals: a potential monitor for ordering in oxide spinels. Phys Chem Miner 28(7):435–444

    Article  Google Scholar 

  • Andreozzi GB, Lucchesi S, Skogby H, Della Giusta A (2001b) Compositional dependence of cation distribution in some synthetic (Mg, Zn)(Al, Fe3+)2O4 spinels. Eur J Mineral 13:391–402

    Article  Google Scholar 

  • Andreozzi GB, Baldi G, Bernardini GP, Di Benedetto F, Romanelli M (2004) 57Fe Mössbauer and electronic spectroscopy study on a new synthetic hercynite-based pigment. J Eur Ceram Soc 24:821–824

    Article  Google Scholar 

  • Aramburu JA, GarcÍa-Fernández P, GarcÍa-Lastra JM, Barriuso MT, Moreno M (2013) Colour due to Cr3+ ions in oxides: a study of the model system MgO:Cr3+. J Phys Condens Mater 25(17):175501

    Article  Google Scholar 

  • Bosi F, Hålenius U, Andreozzi GB, Skogby H, Lucchesi S (2007) Structural refinement and crystal chemistry of Mn-doped spinel: a case for tetrahedrally coordinated Mn3+ in an oxygen-based structure. Am Miner 92(1):27–33

    Article  Google Scholar 

  • Bosi F, Hålenius U, Skogby H (2010) Crystal chemistry of the MgAl2O4–MgMn2O4–MnMn2O4 system: analysis of structural distortion in spinel- and hausmannite-type structures. Am Miner 95:602–607

    Article  Google Scholar 

  • Bosi F, Andreozzi GB, Hålenius U, Skogby H (2011) Zn-O tetrahedral bond length variations in normal spinel oxides. Am Miner 96:594–598

    Article  Google Scholar 

  • Bosi F, Hålenius U, D’Ippolito V, Andreozzi GB (2012) Blue spinel crystals in the MgAl2O4–CoAl2O4 series: part II. Cation ordering over short-range and long-range scales. Am Miner 97:1834–1840

    Article  Google Scholar 

  • Bruschini E, Speziale S, Andreozzi GB, Bosi F, Hålenius U (2015) The elasticity of MgAl2O4–MnAl2O4 spinels by Brillouin scattering and an empirical approach for bulk modulus prediction. Am Miner 100(2–3):644–651

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, 5. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • D’Ippolito V, Andreozzi GB, Bosi F, Hålenius U (2012) Blue spinel crystals in the MgAl2O4–CoAl2O4 series: part I. Flux growth and chemical characterization. Am Miner 97:1828–1833

    Article  Google Scholar 

  • D’Ippolito V, Andreozzi GB, Bosi F, Hålenius U, Mantovani L, Bersani D, Fregola RA (2013) Crystallographic and spectroscopic characterization of a natural Zn-rich spinel approaching the endmember gahnite (ZnAl2O4) composition. Mineral Mag 77(7):2941–2953

    Article  Google Scholar 

  • D’Ippolito V, Andreozzi GB, Hålenius U, Skogby H, Hametner K, Günther D (2015) Color mechanisms in spinel: cobalt and iron interplay for the blue color. Phys Chem Miner 42(6):431–439

    Article  Google Scholar 

  • Dickson BL, Smith G (1976) Low-temperature optical absorption and Mössbauer spectra of staurolite and spinel. Can Mineral 14(2):206–215

    Google Scholar 

  • Dondi M, Zanelli C, Ardit M, Cruciani G, Mantovani L, Tribaudino M, Andreozzi GB (2013) Ni-free, black ceramic pigments based on Co–Cr–Fe–Mn spinels: a reappraisal of crystal structure, colour and technological behaviour. Ceram Int 39:9533–9547

    Article  Google Scholar 

  • Fierro G, Lo Jacono M, Dragone R, Ferraris G, Andreozzi GB, Graziani G (2005) Fe-Zn manganite spinels and their carbonate precursors: preparation, characterization and catalytic activity. Appl Catal B 57:153–165

    Article  Google Scholar 

  • Fregola RA, Bosi F, Skogby H, Hålenius U (2012) Cation ordering over short-range and long-range scales in the MgAl2O4–CuAl2O4 series. Am Miner 97:1821–1827

    Article  Google Scholar 

  • Fregola RA, Skogby H, Bosi F, D’Ippolito V, Andreozzi GB, Hålenius U (2014) Optical absorption spectroscopy study of the causes for color variations in natural Fe-bearing gahnite: insights from iron valency and site distribution data. Am Miner 99:2187–2195

    Article  Google Scholar 

  • Hålenius U, Bosi F (2014) Color of Mn-bearing gahnite: A first example of electronic transitions in heterovalent exchange coupled IVMn2+VIMn3+ pairs in minerals. Am Miner 99:261–266

    Article  Google Scholar 

  • Hålenius U, Skogby H, Andreozzi GB (2002) Influence of cation distribution on the optical absorption spectra of Fe3+-bearing spinel s.s.–hercynite crystals: evidence for electron transitions in VIFe2+VIFe3+ clusters. Phys Chem Miner 29(5):319–330

    Article  Google Scholar 

  • Hålenius U, Bosi F, Skogby H (2007) Galaxite, MnAl2O4, a spectroscopic standard for tetrahedrally coordinated Mn2+ in oxygen-based mineral structures. Am Miner 92(7):1225–1231

    Article  Google Scholar 

  • Hålenius U, Andreozzi GB, Skogby H (2010) Structural relaxation around Cr3+ and the red-green color change in the spinel (sensu stricto)-magnesiochromite (MgAl2O4–MgCr2O4) and gahnite-zincochromite (ZnAl2O4–ZnCr2O4) solid-solution series. Am Miner 95(4):456–462

    Article  Google Scholar 

  • Hazen RM, Yang H (1999) Effects of cation substitution and order-disorder on P–V–T equations of state of cubic spinels. Am Miner 84:1956–1960

    Article  Google Scholar 

  • Jouini A, Sato H, Yoshikawa A, Fukuda T, Boulon G, Panczer G, Kato K, Hanamura E (2006) Ti-doped MgAl2O4 spinel single crystals grown by the micro-pulling-down method for laser application: growth and strong visible blue emission. J Mater Res 21(9):2337–2344

    Article  Google Scholar 

  • Kleišmantas A, Daukšytė A (2016) The influence of Vietnam and Sri Lanka spinel mineral chemical elements on colour. Chemija 27(1):45–51

    Google Scholar 

  • Lavina B, Salviulo G, Della Giusta A (2002) Cation distribution and structure modelling of spinel solid solutions. Phys Chem Miner 29:10–18

    Article  Google Scholar 

  • Lenaz D, Skogby H, Princivalle F, Hålenius U (2004) Structural changes and valence states in the MgCr2O4–FeCr2O4 solid solution series. Phys Chem Miner 31(9):633–642

    Article  Google Scholar 

  • Malsy AK, Karampelas S, Schwarz D, Klemm L, Armbruster T, Tuan DA (2012) Orangey-red to orangey-pink gem spinels from a new deposit at Lang Chap (Tan Huong-Truc Lau), Vietnam. J Gemmol 33(1–4):19–27

    Article  Google Scholar 

  • Martignago F, Andreozzi GB, Dal Negro A (2006) Thermodynamics and kinetics of cation ordering in natural and synthetic Mg(Al, Fe3+)2O4 spinels from in situ high-temperature X-ray diffraction. Am Miner 91:306–312

    Article  Google Scholar 

  • Mattson SM, Rossman GR (1987) Identifying characteristics of charge transfer transitions in minerals. Phys Chem Miner 14(1):94–99

    Article  Google Scholar 

  • Nassau K (1987) The fifteen causes of color: the physics and chemistry of color. Color Res Appl 12(1):4–26

    Article  Google Scholar 

  • Perinelli C, Bosi F, Andreozzi GB, Conte AM, Armienti P (2014) Geothermometric study of Cr-spinels of peridotite mantle xenoliths from northern Victoria Land (Antarctica). Am Miner 99(4):839–846

    Article  Google Scholar 

  • Perumareddi JR (1967) Ligand field theory of d3 and d7 electronic configurations in noncubic fields. II. Applications to quadrate chromium(III) complexes. J Phys Chem 71(10):3155–3165

    Article  Google Scholar 

  • Prescher C, McCammon C, Dubrovinsky L (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J Appl Crystall 45(2):329–331

    Article  Google Scholar 

  • Reichmann HJ, Jacobsen SD, Ballaran TB (2013) Elasticity of franklinite and trends for transition-metal oxide spinels. Am Miner 98:601–608

    Article  Google Scholar 

  • Schmetzer K, Haxel C, Bank H (1989) Colour of natural spinels, gahnospinels and gahnites. Neues Jahrbuch für Mineralogie 160(2):159–180

    Google Scholar 

  • Sheldrick GM (2013) SHELXL-2013, a program for the refinement of crystal structures from diffraction data. Univ. of Goettingen, Germany

    Google Scholar 

  • Shigley JE, Stockton CM (1984) Cobalt-blue gem spinels. Gems Gemol 20(1):34–41

    Article  Google Scholar 

  • Skogby H, Hålenius U (2003) An FTIR study of tetrahedrally coordinated ferrous iron in the spinel-hercynite solid solution. Am Miner 88(4):489–492

    Article  Google Scholar 

  • Taran MN, Koch-Müller M, Langer K (2005) Electronic absorption spectroscopy of natural (Fe2+, Fe3+)-bearing spinels of spinel s.s.-hercynite and gahnite-hercynite solid solutions at different temperatures and high-pressures. Phys Chem Miner 32(3):175–188

    Article  Google Scholar 

  • Taran MN, Koch-Müller M, Feenstra A (2009) Optical spectroscopic study of tetrahedrally coordinated Co2+ in natural spinel and staurolite at different temperatures and pressures. Am Miner 94(11–12):1647–1652

    Article  Google Scholar 

  • Waerenborgh JC, Annersten H, Ericsson T, Figueiredo MO, Cabral JMP (1990) A Mössbauer study of natural gahnite spinels showing strongly temperature-dependent quadrupole splitting distributions. Eur J Mineral 2(3):267–271

    Article  Google Scholar 

  • Waerenborgh JC, Figueiredo MO, Cabral JMP, Pereira LCJ (1994) Powder XRD structure refinements and 57Fe Mössbauer effect study of synthetic Zn1 – xFexAl2O4 (0 < x ≤ 1) spinels annealed at different temperatures. Phys Chem Miner 21(7):460–468

    Article  Google Scholar 

Download references

Acknowledgements

Samples were kindly made available by Swedish Museum of Natural History, M. Macrì (curator of the Earth Sciences Museum, Sapienza University of Rome) and private collector G. Patriarca. M. Serracino is thanked for his kind assistance during electron microprobe. V.D’I. acknowledges support through SYNTHESYS program (Grant SE-TAF-2090), which was made available by the European Community under the FP7 Programme. U.H. and H.S. thank the Swedish Research Council (VR) for financial support. F.B. and G.B.A. acknowledge the financial support of Italian MIUR and Sapienza University of Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni B. Andreozzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreozzi, G.B., D’Ippolito, V., Skogby, H. et al. Color mechanisms in spinel: a multi-analytical investigation of natural crystals with a wide range of coloration. Phys Chem Minerals 46, 343–360 (2019). https://doi.org/10.1007/s00269-018-1007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-1007-5

Keywords

Navigation