Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 10, pp 995–1001 | Cite as

Thermal equation of state of MgSiO4H2 phase H determined by in situ X-ray diffraction and a multianvil apparatus

  • Masayuki NishiEmail author
  • Jun Tsuchiya
  • Takeshi Arimoto
  • Sho Kakizawa
  • Takehiro Kunimoto
  • Yoshinori Tange
  • Yuji Higo
  • Tetsuo Irifune
Original Paper

Abstract

Phase H (MgSiO4H2) is the high-pressure form of dense hydrous silicate that could deliver surface water into the lower mantle. In this study, we determined the thermal equations of the state of phase H using in situ X-ray diffraction measurements, under conditions ranging from 34 to 62 GPa and 300 and 1300 K, using a multianvil apparatus. Analysis of the data, based on the Mie–Grüneisen–Debye model using third-order Burch–Murnaghan equations at a reference pressure of 35 GPa, yielded the following results Vref = 49.61 ± 0.01 Å3, Kref = 344.6±4.1 GPa, \(K_{{{\text{ref}}}}^{\prime }\) = 3.05 ± 0.32, θref = 974 ± 146 K, γref = 1.8 ± 0.1, and q = 1.79 ± 0.55. The compressibility of phase H observed in this study agrees well with that derived from theoretical calculations in pressure regions where hydrogen bond symmetrization is predicted. It was also found that the volume and compressibility of phase H and δ-AlOOH were similar.

Keywords

Dense hydrous magnesium silicates MgSiO4H2 phase H X-Ray diffraction Multianvil apparatus Equation of state 

Notes

Acknowledgements

We appreciate helpful comments from H. Dekura regarding the experimental results and data analysis. We also thank Z. Youmo for his helpful support during the experiments. The in situ X-ray measurements were conducted at SPring-8 (proposal numbers 2016B0075 and 2017B0075). This work was supported by MEXT/JSPS KAKENHI (Grant No. JP15H05469 to MN, JP15H05829 and JP25220712 to MN and TI, JP15H05834 to JT).

References

  1. Bindi L, Nishi M, Tsuchiya J, Irifune T (2014) Crystal chemistry of dense hydrous magnesium silicates: the structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000 °C. Am Miner 99:1802–1805CrossRefGoogle Scholar
  2. Frost DJ, Fei Y (1998) Stability of phase D at high pressure and high temperature. J Geophys Res 103:7463–7474CrossRefGoogle Scholar
  3. Gleason AE, Jeanloz R, Kunz M (2008) Pressure–temperature stability studies of FeOOH using X-ray diffraction. Am Miner 93:1882–1885CrossRefGoogle Scholar
  4. Gleason AE, Quiroga CE, Suzuki A, Pentcheva R, Mao WL (2013) Symmetrization driven spin transition in ε-FeOOH at high pressure. Earth Planet Sci Lett 379:49–55CrossRefGoogle Scholar
  5. Holl CM, Smyth JR, Manghnani MH, Amulele GM, Sekar M, Frost DJ, Prakapenka VB, Shen G (2006) Crystal structure and compression of an iron-bearing Phase A to 33 GPa. Phys Chem Miner 33:192–199CrossRefGoogle Scholar
  6. Hu Q, Kim DY, Yang W, Yang L, Meng Y, Zhang L, Mao HK (2016) FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534:241–244CrossRefGoogle Scholar
  7. Jackson I, Rigden SM (1996) Analysis of P–V–T data: constraints on the thermoelastic properties of high-pressure minerals. Phys Earth Planet Inter 96:85–112CrossRefGoogle Scholar
  8. Komabayashi T, Omori S (2006) Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35 GPa, 1600 °C: implications for water circulation in the Earth’s deep mantle. Phys Earth Planet Inter 156:89–107CrossRefGoogle Scholar
  9. Komatsu K, Kuribayashi T, Sano A, Ohtani E, Kudoh Y (2006) Redetermination of the high-pressure modification of AlOOH from single-crystal synchrotron data. Acta Crystallogr Sect E Crystallogr Commun 62:216–218CrossRefGoogle Scholar
  10. Kuribayashi T, Sano-Furukawa A, Nagase T (2014) Observation of pressure-induced phase transition of δ-AlOOH by using single crystal synchrotron X-ray diffraction method. Phys Chem Miner 41:303–312CrossRefGoogle Scholar
  11. Liu J, Hu Q, Kim DY, Wu Z, Wang W, Xiao Y, Chow P, Meng Y, Prakapenka VB, Mao HK, Mao WL (2017) Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature 551:494–497CrossRefGoogle Scholar
  12. Lv C-J, Liu L, Gao Y, Liu H, Yi L, Zhuang C-Q, Li Y, Du J-G (2017) Structural, elastic, and vibrational properties of phase H: a first-principles simulation. Chin Phys B 26:067401CrossRefGoogle Scholar
  13. Mashino I, Murakami M, Ohtani E (2016) Sound velocities of δ-AlOOH up to core-mantle boundary pressures with implications for the seismic anomalies in the deep mantle. J Geophys Res 121:595–609CrossRefGoogle Scholar
  14. Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y (2014) Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci 7:224–227CrossRefGoogle Scholar
  15. Nishi M, Irifune T, Gréaux S, Tange Y, Higo Y (2015) Phase transitions of serpentine in the lower mantle. Phys Earth Planet Inter 245:52–58CrossRefGoogle Scholar
  16. Nishi M, Kuwayama Y, Tsuchiya J, Tsuchiya T (2017) The pyrite-type high-pressure form of FeOOH. Nature 547:205–208CrossRefGoogle Scholar
  17. Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y, Nishijima M (2014) Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett 401:12–17CrossRefGoogle Scholar
  18. Ohtani E, Shibata T, Kubo T, Kato T (1995) Stability of hydrous phases in the transition zone and the upper most part of the lower mantle. Geophys Res Lett 22:2553–2556CrossRefGoogle Scholar
  19. Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143:255–269CrossRefGoogle Scholar
  20. Ohtani E, Amaike Y, Kamada S, Sakamaki T, Hirao N (2014) Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophys Res Lett 41:8283–8287CrossRefGoogle Scholar
  21. Panero WR, Caracas R (2017) Stability of phase H in the MgSiO4H2–AlOOH–SiO2 system. Earth Planet Sci Lett 463:171–177CrossRefGoogle Scholar
  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  23. Ringwood AE, Major A (1967) High-pressure reconnaissance investigations in the system MgO–SiO2–H2O. Earth Planet Sci Lett 2:130–133CrossRefGoogle Scholar
  24. Sano A, Ohtani E, Kondo T, Hirao N, Sakai T, Sata N, Ohishi Y, Kikegawa T (2008) Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary. Geophys Res Lett 35:L03303CrossRefGoogle Scholar
  25. Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E, Yagi T (2009) Change in compressibility of δ -AlOOH and δ -AlOOD at high pressure: a study of isotope effect and hydrogen-bond symmetrization. Am Miner 94:1255–1261CrossRefGoogle Scholar
  26. Shieh SR, Mao HK, Hemley RJ, Ming LC (1998) The decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet Sci Lett 159:12–23CrossRefGoogle Scholar
  27. Suzuki A (2016) Pressure-volume-temperature equation of state of ε-FeOOH to 11 GPa and 700 K. J Miner Petrol Sci 111:420–424CrossRefGoogle Scholar
  28. Suzuki A, Ohtani E, Kamada T (2000) A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000 °C. Phys Chem Miner 27:689–693CrossRefGoogle Scholar
  29. Tange Y, Irifune T, Funakoshi KI (2008) Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils. High Press Res 28:245–254CrossRefGoogle Scholar
  30. Thompson EC, Campbell AJ, Tsuchiya J (2017) Elasticity of ε-FeOOH: Seismic implications for earth’s lower mantle. J Geophys Res 122:5038–5047CrossRefGoogle Scholar
  31. Tsuchiya T (2003) First-principles prediction of the P–V–T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res 108:2462CrossRefGoogle Scholar
  32. Tsuchiya J (2013) First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle. Geophys Res Lett 40:4570–4573CrossRefGoogle Scholar
  33. Tsuchiya J, Mookherjee M (2015) Crystal structure, equation of state, and elasticity of phase H (MgSiO4H2) at Earth’s lower mantle pressures. Sci Rep 5:5534Google Scholar
  34. Tsuchiya J, Tsuchiya T (2009) Elastic properties of δ-AlOOH under pressure: first principles investigation. Phys Earth Planet Inter 174:122–127CrossRefGoogle Scholar
  35. Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T (2002) First principles calculation of a high-pressure hydrous phase, δ-AlOOH. Geophys Res Lett 29:1909CrossRefGoogle Scholar
  36. Van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584CrossRefGoogle Scholar
  37. Vanpeteghem CB, Ohtani E, Kondo T (2002) Equation of state of the hydrous phase δ-AlOOH at room temperature up to 22.5 GPa. Geophys Res Lett 29:119–1122CrossRefGoogle Scholar
  38. Walter MJ, Thomson AR, Wang W, Lord OT, Ross J, McMahon SC, Baron MA, Melekhova E, Kleppe AK, Kohn SC (2015) The stability of hydrous silicates in Earth’s lower mantle: Experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chem Geol 418:6–29CrossRefGoogle Scholar
  39. Xue X, Kanzaki M, Shatskiy A (2008) Dense hydrous magnesium silicates, phase D, and superhydrous B: new structural constraints from one- and two-dimensional 29 Si and 1H NMR. Am Miner 93:1099–1111CrossRefGoogle Scholar
  40. Zhu S, Hu Q, Mao WL, Mao HK, Sheng H (2017) Hydrogen-bond symmetrization breakdown and dehydrogenation mechanism of FeO2H at high pressure. J Am Chem Soc 139:12129–12132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  2. 2.Earth and Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  3. 3.Japan Synchrotron Radiation Research InstituteHyogoJapan

Personalised recommendations