Skip to main content
Log in

Thermal expansion of coesite determined by synchrotron powder X-ray diffraction

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Thermal expansion of synthetic coesite was studied with synchrotron powder X-ray diffraction in the temperature range of 100–1000 K. We determined the unit cell parameters of monoclinic coesite (a, b, c, and β) every 50 K in this temperature range. We observed that a and b parameters increase with increasing temperature, while c decreases. The β angle also decreases with temperature and approaches 120°. As a result, the unit cell volume expands by only 0.7% in this temperature range. Our measurements provide thermal expansion coefficients of coesite as a function of temperature: it increases from 3.4 × 10−6 K−1 at 100 K to 9.3 × 10−6 K−1 at 600 K and remains nearly constant above this temperature. The Suzuki model based on the zero-pressure Mie–Grüneisen equation of state was implemented to fit the unit cell volume data. The refined parameters are \({V_0}\) = 546.30(2) Å3, \(Q\) = 7.20(12) × 106 J/mol and \({\theta _{\text{D}}}\) = 1018(43) K, where \({\theta _{\text{D}}}\) is the Debye temperature and \({V_0}\) is the unit cell volume at 0 K with an assumption that \({K^\prime }\) is equal to 1.8. The obtained Debye temperature is consistent with that determined in a previous study for heat capacity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angel RJ, Mosenfelder JL, Shaw CS (2001) Anomalous compression and equation of state of coesite. Phys Earth Planet Inter 124:71–79

    Article  Google Scholar 

  • Boccaccini AR, Silva DD (2008) Industrial developments in the field of optically transparent inorganic materials: a survey of recent patents. Recent Pat Mater Sci 1:56–73

    Article  Google Scholar 

  • Bose KU, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am Miner 80:231–238

    Article  Google Scholar 

  • Bourova E, Richet P, Petitet J-P (2006) Coesite (SiO2) as an extreme case of superheated crystal: an X-ray diffraction study up to 1776K. Chem Geol 229:57–63

    Article  Google Scholar 

  • Černok A, Bykova E, Ballaran TB, Liermann HP, Hanfland M, Dubrovinsky L (2014) High-pressure crystal chemistry of coesite-I and its transition to coesite-II. Z Kristallogr Cryst Mater 229(11):761–773

    Article  Google Scholar 

  • Chen T, Gwanmesia GD, Wang X, Zou Y, Liebermann RC, Michaut C, Li B (2015) Anomalous elastic properties of coesite at high pressure and implications for the upper mantle X-discontinuity. Earth Planet Sci Lett 412:42–51

    Article  Google Scholar 

  • Coes L (1953) A new dense crystalline silica. Science 118:131–132

    Article  Google Scholar 

  • Dubrovinskaia N, Dubrovinsky L (2001) High-pressure silica polymorphs as hardest known oxides. Mater Chem Phys 68(1–3):77–79

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants, vol 2. American Geophysical Union, Washington, pp 29–44

    Chapter  Google Scholar 

  • Galkin VM, Doroshev AM, Babich JV (1987) Thermal expansion of coesite. Geokhimiya 11:1645–1646

    Google Scholar 

  • Gillet P, Cléac’h L, Madon M (1990) High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures. J Geophys Res Solid Earth 10(B13):21635–21655 95(

    Article  Google Scholar 

  • Holland TJ, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Kawaguchi S, Takemoto M, Osaka K, Nishibori E, Moriyoshi C, Kubota Y, Kuroiva Y, Sugimoto K (2017) High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of Spring-8. Rev Sci Instrum 88:085–111

    Article  Google Scholar 

  • Kroll H, Kirfel A, Heinemann R, Barbier B (2012) Volume thermal expansion and related thermophysical parameters in the Mg, Fe olivine solid-solution series. Eur J Mineral 24:935–956

    Article  Google Scholar 

  • Kulik E, Nishiyama N, Masuno A, Zubavichus Y, Murzin V, Khramov E, Yamada A, Ohfuji H, Wille H-C, Irifune T, Katsura T (2015) A complete solid solution with rutile-type structure in SiO2–GeO2 System at 12 GPa and 1600 °C. J Am Ceram Soc 98:4111–4116

    Article  Google Scholar 

  • Langreiter T, Kahlenberg V (2015) TEV—a program for the determination of the thermal expansion tensor from diffraction data. Crystals 5(1):143–153

    Article  Google Scholar 

  • Leger JM, Haines J, Schmidt M, Petitet JP (1996) Discovery of hardest known oxide. Nature 383:401

    Article  Google Scholar 

  • Levien L, Prewitt CT (1981) High-pressure crystal structure and compressibility of coesite. Am Miner 66:324–333

    Google Scholar 

  • Murakami M, Hirose K, Ono S, Ohishi Y (2003) Stability of CaCl2-type and α-PbO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. Geophys Res Lett 30(5):1207–1210

    Article  Google Scholar 

  • Ono S, Hirose K, Nishiyama N, Isshiki M (2002) Phase boundary between rutile-type and CaCl2-type germanium dioxide determined by in situ X-ray observations. Am Miner 87:99–102

    Article  Google Scholar 

  • Paufler P, Weber T (1999) On the determination of linear expansion coefficients of triclinic crystals using X-ray diffraction. Eur J Mineral 11(4):721–730

    Article  Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallog (Cryst Mater) 229:345–352

    Google Scholar 

  • Ramsdell LS (1955) The crystallography of coesite. Am Miner 40:975–982

    Google Scholar 

  • Skinner BJ (1962) Thermal expansion of ten minerals. US Geol Surv Prof Paper D 450:109–112

    Google Scholar 

  • Suzuki I (1975) Thermal expansion of periclase and olivine, and their anharmonic properties. J Phys Earth 23:145–159

    Article  Google Scholar 

  • Suzuki I, Okajima SI, Kiyoshi SE (1979) Thermal expansion of single-crystal manganosite. J Phys Earth 27(1):63–69

    Article  Google Scholar 

  • Watanabe T (1982) Thermodynamic properties of synthetic high-pressure compounds relevant to the Earth’s mantle. In: Manghnani MH, Akimoto S (eds) High-pressure research in geophysics. Center Acad Publ, Tokyo, pp 441–464

    Chapter  Google Scholar 

  • Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Miner 23:1–10

    Article  Google Scholar 

  • Zoltai T, Buerger MJ (1959) The crystal structure of coesite, the dense, high-pressure form of silica. Z Kristallog (Cryst Mater) 111:129–141

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Yamada, R. Angel, A. Holzheid, C. Giehl, E. Düsterhöft, N. Gaida for useful discussions and anonymous reviewers for constructive comments. We also thank S. Sonntag for technical assistance. This research was supported by Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), New Materials Science and Element Strategy granted to N. N. The synchrotron radiation experiments were performed at BL02B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposals no. 2015A2058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Kulik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulik, E., Murzin, V., Kawaguchi, S. et al. Thermal expansion of coesite determined by synchrotron powder X-ray diffraction. Phys Chem Minerals 45, 873–881 (2018). https://doi.org/10.1007/s00269-018-0969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0969-7

Keywords

Navigation