Synthesis, structure and properties of blödite-type solid solutions, Na2Co1−xCu x (SO4)2·4H2O (0 < x ≤ 0.18), and crystal structure of synthetic kröhnkite, Na2Cu(SO4)2·2H2O

  • Delyana Marinova
  • Manfred Wildner
  • Tsvetelina Bancheva
  • Radostina Stoyanova
  • Mitko Georgiev
  • Donka G. Stoilova
Original Paper
  • 16 Downloads

Abstract

Based on different experimental methods—crystallization processes in aqueous solutions, infrared spectroscopy, single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) and TG–DTA–DSC measurements—it has been established that copper ions are included in sodium cobalt sulfate up to about 18 mol%, thus forming limited solid solutions Na2Co1−xCu x (SO4)2·4H2O (0 < x ≤ 0.18) with a blödite-type structure. In contrast, cobalt ions are not able to accept the coordination environment of the copper ions in the strongly distorted Cu(H2O)2O4 octahedra, thus resulting in the crystallization of Co-free kröhnkite. The solid solutions were characterized by vibrational and EPR spectroscopy. DSC measurements reveal that the copper concentration increase leads to increasing values of the enthalpy of dehydration (ΔHdeh) and decreasing values of the enthalpy of formation (ΔHf). The crystal structures of synthetic kröhnkite, Na2Cu(SO4)2·2H2O, as well as of three Cu2+-bearing mixed crystals of Co-blödite, Na2Co1−xCu x (SO4)2·4H2O with x(Cu) ranging from 0.03 to 0.15, have been investigated from single-crystal X-ray diffraction data. The new data for the structure of synthetic kröhnkite facilitated to clarify structural discrepancies found in the literature for natural kröhnkite samples, traced back to a mix-up of lattice parameters. The crystal structures of Co-dominant Na2Co1−xCu x (SO4)2·4H2O solid solutions reveal a comparatively weak influence of the Jahn–Teller-affected Cu2+ guest cations up to the maximum content of x(Cu) = 0.15. The response of the MO2(H2O)4 octahedral shape by increased bond-length distortion with Cu content is clear cut (but limited), mainly concerning the M–OH2 bond lengths, whereas other structural units are hardly affected. However, the specific type of imposed distortion seems to play an important role impeding higher Cu/Co replacement ratios.

Keywords

Blödite-type Na2Co1−xCux(SO4)2·4H2O solid solutions Kröhnkite Na2Cu(SO4)2·2H2X-ray diffraction Thermal analysis Spectroscopic analysis 

Notes

Acknowledgements

The authors thank Prof. H. Effenberger, Vienna, for helpful discussions and her support concerning the proposed reasons for structural discrepancies of kröhnkite from Cioclovina Cave compared to other natural and the present synthetic kröhnkite samples. The financial support from the Scientific Research Department of the University of Chemical Technology and Metallurgy (Republic of Bulgaria) is acknowledged (Project no. 11712/2017). Comments and suggestions by two anonymous reviewers helped to improve the manuscript significantly and are gratefully acknowledged.

References

  1. Baggio R, Stoilova D, Garland MT (2003) CuxM1–x(HCOO)2(H2O)1.33 (M = Mg, Co, x = 0.74): crystal structure and hydrogen bonding system. J Mol Struct 659:35–42CrossRefGoogle Scholar
  2. Balarew C (1987) Mixed crystals and double salts between metal(II) salt hydrates. Z Kristallogr 181:35–82CrossRefGoogle Scholar
  3. Balarew C, Karaivanova V (1975) Change in the crystal structure of zinc(II) sulfate heptahydrate and magnesium sulfate heptahydrate due to the isodimorphous substitution by copper(II), iron(II) and cobalt(II). Krist Techn 10:1101–1110CrossRefGoogle Scholar
  4. Balarew C, Karaivanova V, Oikova T (1970) Contribution to the study of the isomorphic and isodimorphic inclusions in crystal salts. III. Examination of the systems zinc sulfate-cobalt sulfate-water and zinc sulfate-water nickel sulfate-water at 25 °C. Commun Dep Chem Bulg Acad Sci 3:673–684Google Scholar
  5. Balić-Žunić T, Birkedal R, Katerinopoulou A, Comodi P (2016) Dehydration of blödite, Na2Mg(SO4)2(H2O)4, and leonite, K2Mg(SO4)2(H2O)4. Eur J Mineral 28:33–42CrossRefGoogle Scholar
  6. Barpanda P, Oyama G, Ling ChrD, Yamada A (2014) Kröhnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries. Chem Mater 26:1297 – 1299CrossRefGoogle Scholar
  7. Baur WH (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr B 30:1195–1215CrossRefGoogle Scholar
  8. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197CrossRefGoogle Scholar
  9. Bukin VI, Nozik YuZ (1974) A neutronographic investigation of hydrogen bonding in zinc astrakanite Na2Zn(SO4)2·4H2O. J Struct Chem 15:616–619CrossRefGoogle Scholar
  10. Burns PC, Hawthorne FC (1996) Static and dynamic Jahn–Teller effects in Cu2+ oxysalt minerals. Can Mineral 34:1089–1105Google Scholar
  11. Campbell JA, Ryan DP, Simpson LM (1970) Interionic forces in crystal—II. Infrared spectra of SO4 groups and ‘octahedrally’ coordinated water in some alums, Tutton salts, and the double salts obtained by dehydrating them. Spectrochim Acta 26A:2351–2361CrossRefGoogle Scholar
  12. Comodi P, Nazzareni S, Balić-Žunić T, Zucchini A, Hanfland M (2014) The high-pressure behavior of bloedite: a synchrotron single-crystal X-ray diffraction study. Amer Mineral 99:511–518CrossRefGoogle Scholar
  13. Comodi P, Stagno V, Zucchini A, Fei Y, Prakapenka V (2017) The compression behavior of blödite at low and high temperature up to ∼10 GPa: Implications for the stability of hydrous sulfates on icy planetary bodies. Icarus 285:137–144CrossRefGoogle Scholar
  14. Cot ML, Conquet MP (1967) Sur le sulfate double Na2Co(SO4)2 et sur ses hydrates. C R Acad Sc (Paris). Sèrie C 264:1294–1297Google Scholar
  15. Ebert M, Vojtísek P (1993) The hydrates of double selenates. Chem Pap 47:292–296Google Scholar
  16. Fleck M, Kolitsch U (2003) Natural and synthetic compounds with kröhnkite-type chains. An update. Z Kristallogr 218:553–567Google Scholar
  17. Fleck M, Kolitsch U, Hertweck B (2002) Natural and synthetic compounds with kröhnkite-type chains: review and classification. Z Kristallogr 217:435–443Google Scholar
  18. Fry AM, Sweeney OT, Phelan WA, Drichko N, Siegler MA, McQueen TM (2015) Unique edge-sharing sulfate-transition metal coordination in Na2M(SO4)2 (M = Ni and Co). J Solid State Chem 222:129–135CrossRefGoogle Scholar
  19. Georgiev M, Bancheva T, Marinova D, Stoyanova R, Stoilova D (2016) On the formation of solid solutions with blödite- and kröhnkite-type structures. I. Synthesis, vibrational and EPR spectroscopic investigations of Na2Zn1–xCux(SO4)2⋅4H2O (0 < x < 0.14). Int J Sci Res Sci Technol 2:279–282Google Scholar
  20. Giglio M (1958) Die Kristallstruktur von Na2Zn(SO4)2·4H2O (Zn-Blödit). Acta Crystallogr 11:789–794CrossRefGoogle Scholar
  21. Hawthorne FC (1985) Refinement of the crystal structure of bloedite; structural similarities in the [VI M(IV TΦ4)2Φn] finite-cluster minerals. Can Mineral 23:669–674Google Scholar
  22. Hawthorne FC, Ferguson RB (1975) Refinement of the crystal structure of kröhnkite. Acta Crystallogr B31:1753–1755CrossRefGoogle Scholar
  23. Karadjova V, Kovacheva D, Stoilova D (2014) Study on the cesium Tutton compounds, Cs2M(XO4)2·6H2O (M = Mg, Co, Zn; X = S, Se): Preparation, X-ray powder diffraction and infrared spectra. Vib Spectrosc 75:51–58CrossRefGoogle Scholar
  24. Kasatkin AV, Nestola F, Plášil J, Marty J, Belakovskiy DI, Agakhanov AA, Mills SJ, Pedron D, Lanza A, Favaro M, Bianchin S, Lykova IS, Goliáš V, Birch WD (2013) Manganoblödite, Na2Mn(SO4)2·4H2O, and cobaltoblödite, Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County. Mineral Mag 77:367–383CrossRefGoogle Scholar
  25. Kogan VB, Ogorodnikov CK, Kafarov VV (1970) Ternary and Polycomponent Systems of Inorganic Compounds. Izd Nauka, LeningradGoogle Scholar
  26. Kolitsch U, Fleck M (2006) Third update on compounds with kröhnkite-type chains: the crystal structure of wendwilsonite [Ca2Mg(AsO4)2·2H2O] and the new triclinic structure types of synthetic AgSc(CrO4)2·2H2O and M 2Cu(Cr2O7)2·2H2O (M = Rb, Cs). Eur J Miner 18:471–482CrossRefGoogle Scholar
  27. Lutz HD (1988) Bonding and structure of water molecules in solid hydrates. Correlation of spectroscopic and structural data. Struct Bond (Berlin) 69:97–125CrossRefGoogle Scholar
  28. Marinova D, Kostov V, Nikolova R, Kukeva R, Zhecheva E, Sendova-Vasileva M, Stoyanova R (2015) From kröhnkite- to alluaudite-type of structure: novel method of synthesis of sodium manganese sulfates with electrochemical properties in alkali-metal ion batteries. J Mater Chem 3A:22287–22299CrossRefGoogle Scholar
  29. Marinova D, Georgiev M, Bancheva T, Stoilova D (2016) On the formation of solid solutions with blödite- and kröhnkite-type structures. II. Structural and thermal investigations of solid solutions Na2Zn1–xCux(SO4)2⋅4H2O (0 < x < 0.14). Int J Sci Res Sci Technol 2:283–295Google Scholar
  30. Marinova D, Georgiev M, Bancheva T, Stoyanova R, Stoilova D (2017) On the formation of solid solutions with blödite- and kröhnkite-type structures. III. Synthesis, structural, thermal and spectroscopic investigations of Na2Ni1–xCux(SO4)2⋅4H2O (0 < x ≤ 0.17). J Therm Anal Calorim.  https://doi.org/10.1007/s10973-017-6522-y Google Scholar
  31. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591CrossRefGoogle Scholar
  32. Nagase K, Yokobayashi H (1978) Spectrometric and thermal analytical studies on the dehydration of copper(II) sulfate and its double salts. Thermochim Acta 23:283–291CrossRefGoogle Scholar
  33. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  34. Nonius (1998) Kappa CCD program package. Nonius B.V., DelftGoogle Scholar
  35. Norrestam R (1994) The effective shapes and sizes of Cu2+ and Mn3+ ions in oxides and fluorides. Z Kristallogr 209:99–106Google Scholar
  36. Onac BP, Effenberger HS, Collins NC, Kearns JB, Breban RC (2011) Revisiting three minerals from Cioclovina Cave (Romania). Int J Speleol 40:99–108CrossRefGoogle Scholar
  37. Petruševski V, Šoptrajanov B (1988) Description of molecular distortions. II. Intensities of the symmetric stretching bands of tetrahedral molecules. J Mol Struct 175:349–354CrossRefGoogle Scholar
  38. Reynaud M (2013) Design of new sulfate-based positive electrode materials for Li- and Na-ion batteries. Material chemistry. Dissertation, Université de Picardie Jules VerneGoogle Scholar
  39. Reynaud M, Ati M, Boulineau S, Sougrati MT, Melot BC, Rousse G, Chotard JN, Tarascon JM (2013) Bimetallic sulfates A2M(SO4)2·nH2O (A = Li, Na and M = transition metal): as new attractive electrode materials for Li- and Na-ion batteries. ECS Trans 50:11–19CrossRefGoogle Scholar
  40. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  41. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122CrossRefGoogle Scholar
  42. Siidra OI, Lukina EA, Nazarchuk EV, Depmeier W, Bubnova RS, Agakhanov AA, Adontseva EY, Filatov SK, Kovrugin VM (2018) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineral Mag.  https://doi.org/10.1180/minmag.2017.081.037 Google Scholar
  43. Silber P, Cot ML (1967) Sur quelques proprietes de l’espece cristalline Na2Cu(SO4)2 et de son hydrate Na2Cu(SO4)2·2H2O. C R Acad Sc (Paris). Série C 264:312–315Google Scholar
  44. Stoilova D (1993) On solid solution formation in the Cu(HCOO)2-Co(HCOO)2-H2O system. J Solid State Chem 104:404–411CrossRefGoogle Scholar
  45. Stoilova D, Wildner M (2004) Blödite-type compounds Na2Me(SO4)2⋅4H2O (Me = Mg, Co, Ni, Zn): crystal structures and hydrogen bonding systems. J Mol Struct 706:57–63CrossRefGoogle Scholar
  46. Stoilova D, Balarew C, Vassileva V (1985) Co-crystallization of copper and magnesium formates at 25, 50 and 70 °C. Commun Dept Chem Bulg Acad Sci 8:3–13Google Scholar
  47. Trendafelov D, Balarew C (1968) Beitrag zur Untersuchung der isomorphen und isodimorphen Einschlüsse in Kristallsalzen. II. Untersuchung der Verteilung der Kobaltionen in verschiedenen Zinksulfathydraten. Comm Dep Chem Bulg Acad Sci 1:73 – 80Google Scholar
  48. Vizcayno C, Garcia-Gonzalez MT (1999) Na2Mg(SO4)2·4H2O, the Mg end-member of the bloedite-type of mineral. Acta Crystallogr C 55:8–11CrossRefGoogle Scholar
  49. Wagman D, Evans W, Parker V et al (1982) The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 11:1–381CrossRefGoogle Scholar
  50. Wildner M, Stoilova D (2003) Crystal structures and crystal chemical relationships of kröhnkite- and collinsite type compounds Na2 Me 2+(XO4)2·2H2O (X = S, Me = Mn, Cd; and X = Se, Me = Mn, Co, Ni, Zn, Cd) and K2Co(SeO4)2·2H2O. Z Kristallogr 218:201–209Google Scholar
  51. Wildner M, Giester G, Kersten M, Langer K (2014) Polarized electronic absorption spectra of colourless chalcocyanite, CuSO4, with a survey on crystal fields in Cu2+ minerals. Phys Chem Minerals 41:669–680CrossRefGoogle Scholar
  52. Wildner M, Marinova D, Stoilova D (2016) Vibrational spectra of Cs2Cu(SO4)2⋅6H2O and Cs2Cu(SeO4)2nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2⋅6H2O. J Mol Struct 1106:440–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institut für Mineralogie und KristallographieUniversität WienViennaAustria
  3. 3.Department of Inorganic ChemistryUniversity of Chemical Technology and MetallurgySofiaBulgaria

Personalised recommendations