Physics and Chemistry of Minerals

, Volume 45, Issue 8, pp 745–758 | Cite as

Siudaite, Na8(Mn2+2Na)Ca6Fe3+3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

  • Nikita V. ChukanovEmail author
  • Ramiza K. Rastsvetaeva
  • Łukasz Kruszewski
  • Sergey M. Aksenov
  • Vyacheslav S. Rusakov
  • Sergey N. Britvin
  • Svetlana A. Vozchikova
Original Paper


The new eudialyte-group mineral siudaite, ideally Na8(Mn2+2Na)Ca6Fe3+3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs’ hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ε = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, –O = Cl − 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+1.76Mn2+1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (–114), 4.29 (55) (–225), 3.389 (47) (131), 3.191 (63) (–228). 2.963 (100) (4–15), 2.843 (99) (–444), 2.577 (49) (3–39). Siudaite is named after the Polish mineralogist and geochemist Rafał Siuda (b. 1975).


New mineral Siudaite Eudialyte group Crystal structure IR spectroscopy Mössbauer spectroscopy Peralkaline pegmatite Khibiny massif 



This work was financially supported by the Russian Foundation for Basic Research, grants nos. 18-55-18003 (in part of mineralogical and chemical data), 16-05-00739 (in part of single-crystal X-ray analysis) and Russian Science Foundation, Grant No. 14-17-00048 (in part of investigations of physical properties). The authors are grateful to Dr. Axel Sjöqvist and Dr. Jiři Sejlora for valuable comments. The authors thank the Centre for X-ray Diffraction Studies of SPSU and Center for Molecule Composition Studies of INEOS RAS for instrumental support.

Supplementary material

269_2018_959_MOESM1_ESM.cif (175 kb)
Supplementary material 1 (CIF 175 KB)
269_2018_959_MOESM2_ESM.tif (2 mb)
Fig. 1S Powder IR absorption spectra of (a) ikranite and (b) georgbarsanovite drawn using data from Chukanov (2014) (TIF 2096 KB)


  1. Ageeva OA, Borutskii BE, Khangulov VV (2002) Eudialyte as a mineralogical and geochemical indicator of metasomatic processes in the formation of poikilitic nepheline syenites of the Khibina Massif. Geochem Int 40(10):997–1003Google Scholar
  2. Aksenov SM, Rastsvetaeva RK, Mitchell RH, Chakrabarty A (2014) Crystal structure of manganese-rich variety of eudialyte from Suchina Hill, India, and manganese ordering in eudialyte-group minerals. Cryst Repts 59(2):146–154CrossRefGoogle Scholar
  3. Andrianov VI (1987) Development of the system of crystallographic programs RENTGEN for the computers NORD, CM-4 and EC. Kristallografiya 32:228–231Google Scholar
  4. APEX2 (2009) Bruker AXS Inc., MadisonGoogle Scholar
  5. Brandenburg K, Putz H (2005) DIAMOND Version 3. Crystal Impact GbR. BonnGoogle Scholar
  6. Bulakh AG, Petrov TG (2004) Chemical variability of eudialyte group minerals and their sorting. N Jb Miner Mh 3:127–144CrossRefGoogle Scholar
  7. Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–LondonCrossRefGoogle Scholar
  8. Chukanov NV, Pekov IV, Zadov AE, Korovushkin VV, Ekimenkova IA, Rastsvetaeva RK (2003) Ikranite, (Na,H3O)15(Ca,Mn,REE)6Fe3+ 2Zr3(□,Zr)(□,Si)Si24O66(O,OH)6Cl⋅nH2O and raslakite, Na15Ca3Fe3(Na,Zr)3Zr3(Si,Nb)(Si25O73)(OH,H2O)3(Cl,OH), the new eudialyte-group minerals from the Lovozero massif. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc Rus Mineral Soc) 132(5):22–33 (Russian)Google Scholar
  9. Chukanov NV, Pekov IV, Rastsvetaeva RK (2004) Crystal chemistry, properties and synthesis of microporous silicates containing transitional elements. Russ Chem Revs 73(3):227–246CrossRefGoogle Scholar
  10. Coelho AA (2007) TOPAS Academic Version 4.1 Technical ReferenceGoogle Scholar
  11. Davis P, Stopic S, Balomenos E, Panias D, Paspaliaris I, Friedrich B (2017) Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Mineral Eng 108:115–122CrossRefGoogle Scholar
  12. Ekimenkova IA, Rastsvetaeva RK, Khomyakov AP (2000) Crystal structure of the Fe, Cl-analogue of kentbrooksite. Doklady Chem 370:17–20Google Scholar
  13. Feklichev VG, Razina IS, Kataeva ZT (1965) Eudialyte types of the Khibiny alkaline massif. In: Experimental-methodical investigations of ore minerals. Nauka, Moscow, pp. 188–194 (Russian)Google Scholar
  14. Friedrich B, Hanebuth M, Kruse S, Tremel A, Vossenkaul D (2016) Method for opening a eudialyte mineral. Patent number EP2995692 A1Google Scholar
  15. Johnsen O, Gault RA (1997) Chemical variations in eudialyte. N Jb Miner Abh 171:215–237Google Scholar
  16. Johnsen O, Grice JD (1999) The crystal chemistry of the eudialyte group. Can Mineral 37:865–891Google Scholar
  17. Johnsen O, Grice JD, Gault RA (1999) Oneillite: a new Ca-deficient and REE-rich member of the eudialyte group from Mont Saint-Hilaire, Quebec, Canada. Can Mineral 37:1295–1301Google Scholar
  18. Johnsen O, Ferraris G, Gault RA, Grice JD, Kampf AR, Pekov IV (2003) Nomenclature of eudialyte-group minerals. Can Mineral 41:785–794CrossRefGoogle Scholar
  19. Khomyakov AP, Nechelyustov GN, Ekimenkova IA, Rastsvetaeva RK (2005) Georgbarsanovite, Na12(Mn,Sr,REE)3Ca6Fe3 2+Zr3NbSi25O76Cl2·H2O, a mineral species of the eudialyte group: revalidation of barsanovite and the new name of the mineral. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc Rus Mineral Soc) 134(6):47–57 (Russian)Google Scholar
  20. Khomyakov AP, Korovushkin VV, Perfiliev YuD, Cherepanov VM (2010) Location, valence states, and oxidation mechanisms of iron in eudialyte-group minerals from Mössbauer spectroscopy. Phys Chem Miner 37:543–554CrossRefGoogle Scholar
  21. Kostyleva-Labuntsova EE, Borutskiy BE, Sokolova MN, Shlyukova ZV, Dorfman MD, Dudkin OB, Kozyreva LV (1978) Mineralogy of the Khibiny Massif. Nauka, Moscow (Russian)Google Scholar
  22. Lebedev VN (2003) Sulfuric acid technology for processing of eudialyte concentrate. Russ J Appl Chem 76(10):1559–1563CrossRefGoogle Scholar
  23. Lebedev VN, Shchur TE, Maiorov DV, Popova LA, Serkova RP (2003) Specific features of acid decomposition of eudialyte and certain rare-metal concentrates from Kola Peninsula. Russ J Appl Chem 76(8):1191–1196CrossRefGoogle Scholar
  24. Mandarino JA (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Can Mineral 19:441–450Google Scholar
  25. Matsnev ME, Rusakov VS (2014) Study of spatial spin-modulated structures by Mössbauer spectroscopy using SpectrRelax. Proceedings of the Conference on Mössbauer Spectroscopy in Materials Science, Hlohovec u Breclavi (Czech Republic), 26–30 May 2014, 40–49.
  26. Nomura SF, Atencio D, Chukanov NV, Rastsvetaeva RK, Cutinho JMV, Karipidis TK (2010) Manganoeudialyte, a new mineral from Poços de Caldas, Minas Gerais, Brazil. Zap Ross Mineral Obsh (Proc Rus Mineral Soc) 139(4):35–47Google Scholar
  27. Pekov IV, Ekimenkova IA, Chukanov NV, Rastsvetaeva RK, Kononkova NN, Pekova NA, Zadov AE (2001) Feklichevite Na11Ca9(Fe3+,Fe2+)2Zr3Nb[Si25O73](OH,H2O,Cl,O)5, a new mineral of the eudialyte group from Kovdor massif, Kola peninsula. Zap Ross Mineral Obshchestva (Proc Rus Mineral Soc) 130(3):55–65 (Russian) Google Scholar
  28. Petřiček V, Dušek M, Palatinus L (2006) Structure determination software programs. Institute of Physics, Praha, Czech RepublicGoogle Scholar
  29. Prince E (ed) (2004) International tables for crystallography, volume c: mathematical, physical and chemical tables, 3rd edn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  30. Rastsvetaeva RK (2007) Structural mineralogy of eudialyte group: a review. Cryst Repts 52(1):47–64CrossRefGoogle Scholar
  31. Rastsvetaeva RK, Borutskii BE (1990) Structural features of TR-Fe and TR-Mn eucolites. Mineral Zhurnal 12(4):81–88 (Russian) Google Scholar
  32. Rastsvetaeva RK, Chukanov NV (2003) Ikranite: composition and structure of a new mineral of the eudialyte group. Cryst Repts 48(5):717–720CrossRefGoogle Scholar
  33. Rastsvetaeva RK, Chukanov NV (2012) Classification of eudialyte-group minerals. Geol Ore Deposits 54(7):487–497CrossRefGoogle Scholar
  34. Rastsvetaeva RK, Khomyakov AP (2003) Crystal chemistry of modular eudialytes. Cryst Repts 48(Suppl):S69–S81Google Scholar
  35. Rastsvetaeva RK, Ekimenkova IA, Pekov IV (1999) Crystal structure of a new Ca-rich analogue of eudialyte. Dokl Akad Nauk 368(5):636–638 (Russian) Google Scholar
  36. Rastsvetaeva RK, Chukanov NV, Aksenov SM (2012) Eudialyte-Group Minerals: Crystal Chemistry, Properties, Genesis. University of Nizhny Novgorod (in Russian) Google Scholar
  37. Rastsvetaeva RK, Aksenov SM, Rozenberg KA (2015) Crystal structure of the hydrated analogue of rastsvetaevite. Cryst Repts 60(6):831–840CrossRefGoogle Scholar
  38. Schilling J, Marks MAW, Wenzel T, Markl G (2009) Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: a case study from Tamazeght, Morocco. Can Miner 47(2):351–365CrossRefGoogle Scholar
  39. Schilling J, Wu F-Y, McCammon C, Wenzel T, Marks MAW, Pfaff K, Jacob DE, Markl G (2011) The compositional variability of eudialyte-group minerals. Mineral Mag 75(1):87–115CrossRefGoogle Scholar
  40. Shen G, Xu J, Yao P, Li G (2011) Fengchengite, IMA 2007-018a. CNMNC Newsletter No. 11, December 2011, page 2893. Mineral Mag 75:2887–2893CrossRefGoogle Scholar
  41. Sjöqvist ASL, Cornell DH, Andersen T, Erambert M, Ek M, Leijd M (2013) Three compositional varieties of rare-earth element ore: eudialyte-group minerals from the Norra Kärr alkaline complex, Southern Sweden. Minerals 3(1):94–120CrossRefGoogle Scholar
  42. Zakharov VI, Maiorov DV, Alishkin AR, Matveev VA (2011) Causes of insufficient recovery of zirconium during acidic processing of Lovozero eudialyte concentrate. Russ J Non-Ferr Met 52(5):423–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nikita V. Chukanov
    • 1
    • 2
    Email author
  • Ramiza K. Rastsvetaeva
    • 3
  • Łukasz Kruszewski
    • 4
  • Sergey M. Aksenov
    • 3
    • 5
    • 8
  • Vyacheslav S. Rusakov
    • 6
  • Sergey N. Britvin
    • 7
  • Svetlana A. Vozchikova
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow RegionRussia
  2. 2.Faculty of GeologyMoscow State UniversityMoscowRussia
  3. 3.FSRC “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Geological SciencesPolish Academy of SciencesWarsawPoland
  5. 5.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  6. 6.Faculty of PhysicsMoscow State UniversityMoscowRussia
  7. 7.Department of Crystallography, Institute of Earth SciencesSaint Petersburg State UniversityPetersburgRussia
  8. 8.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameUSA

Personalised recommendations