Skip to main content
Log in

Silver binding in argentiferous manganese oxide minerals investigated by synchrotron radiation X-ray absorption spectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The knowledge of the nature of silver occurrence and sites in argentiferous manganese oxides is significant for developing better process to extract silver from manganese-silver ores. Synchrotron radiation has been used to collect Ag K-edge X-ray absorption spectroscopy of three natural and five synthetic samples of silver-containing manganese oxide, basically in the phases of tunnel-type cryptomelane or todorokite and layer-type birnessite or chalcophanite. Data were also gathered on five standards including Ag foil, Ag2O, Ag2SO4, Ag2CO3, and AgNO3 to compare the local environments of Ag atoms with the samples. Ag K-edge XANES studies show that Ag is present in most of the samples in Ag+ oxidation state, except in the Ag-Tod sample through annealing step in the form of Ag0 nanoparticles which are also identified by TEM. The natural samples from Xiangguang manganese-silver ores exhibit similar coordination distances as the corresponding tunnel or layer structured synthetic samples. In the argentiferous cryptomelanes, silver cations do not occupy the tunnel centers like K+, but rather place on the common face sites of the cubic cage formed by MnO6 octahedra, coordinated with about four oxygen anions at ~ 2.4 Å bond distances proved by the EXAFS results. In the silver-exchanged birnessites or natural argentiferous chalcophanite, silver cations probably occupy a tetrahedral coordination to interlayer O atoms and a position located above or below the vacant cavities in the Mn octahedra layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Sagheer FA, Zaki MI (2004) Synthesis and surface characterization of todorokite-type microporous manganese oxides: implications for shape-selective oxidation catalysts. Micropor Mesopor Mat 67(1):43–52

    Article  Google Scholar 

  • Anderson BJ, Jenne EA, Chao TT (1973) The sorption of silver by poorly crystallized manganese oxides. Geochim Cosmochim Ac 37(2):611–622

    Article  Google Scholar 

  • Atkins AL, Shaw S, Peacock CL (2014) Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments. Geochim Cosmochim Ac 144:109–125

    Article  Google Scholar 

  • Bodeï S, Manceau A, Geoffroy N, Baronnet A, Buatier M (2007) Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochim Cosmochim Ac 71(23):5698–5716

    Article  Google Scholar 

  • Brese NE, O’Keeffe M, Ramakrishna BL, Von Dreele RB (1990) Low-temperature structures of CuO and AgO and their relationships to those of MgO and PdO. J Solid State Chem 89:184–190

    Article  Google Scholar 

  • Calderon-Rodarte J, Lopez-Valdivieso A, Aragon-Pina A, Reyes-Bahena JL, Gallegos-Garcia MIL, Zapata-Velazquez A, Robledo-Cabrera A (2017) Mineralogy and silver distridution in argentiferous manganese ores from La Encantada Mines in Mexico. Physicochem Probl Miner Process 53(1):591–600

    Google Scholar 

  • Chang FM, Jansen M (1984) Ag1.8Mn8O16: square planar coordinated Ag⊕ ions in the channels of a novel hollandite variant. Angew Chem 23(11):906–907

    Article  Google Scholar 

  • Chang FM, Jansen M (1986) Der erste Silberhollandit. Revue de chimie minérale 23(1):48–54

    Google Scholar 

  • Charnock JM, Garner CD, Pattrick RA, Vaughan DJ (1988) Investigation into the nature of copper and silver sites in argentian tetrahedrites using EXAFS spectroscopy. Phys Chem Miner 15(3):296–299

    Article  Google Scholar 

  • Chen C, Golden D, Dixon J (1986) Transformation of synthetic birnessite to cryptomelane: an electron microscopic study. Clay Clay Miner 34(5):565–571

    Article  Google Scholar 

  • Chen J, Tang X, Liu J, Zhan E, Li J, Huang X, Shen W (2007) Synthesis and characterization of Ag-Hollandite nanofibers and its catalytic application in ethanol oxidation. Chem Mater 19(17):4292–4299

    Article  Google Scholar 

  • Cui H, Liu X, Tan W, Feng X, Liu F, Daniel Ruan H (2008) Influence of Mn (III) availability on the phase transformation from layered buserite to tunnel-structured todorokite. Clay Clay Miner 56(4):397–403

    Article  Google Scholar 

  • Drits VA, Silvester E, Gorshkov AI, Manceau A (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction. Am Mineral 82(9–10):946–961

    Article  Google Scholar 

  • Fan C, Lu A, Li Y, Wang C (2008) Synthesis, characterization, and catalytic activity of cryptomelane nanomaterials produced with industrial manganese sulfate. J Colloid Interf Sci 327(2):393–402

    Article  Google Scholar 

  • Fan C, Wang L, Fan X, Zhang Y, Zhao L (2015) The mineralogical characterization of argentian cryptomelane from Xiangguang Mn–Ag deposit, North China. J Miner Petrol Sci 110(5):214–223

    Article  Google Scholar 

  • Feng Q, Kanoh H, Miyai Y, Ooi K (1995a) Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chem Mater 7(1):148–153

    Article  Google Scholar 

  • Feng Q, Kanoh H, Miyai Y, Ooi K (1995b) Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase. Chem Mater 7(9):1722–1727

    Article  Google Scholar 

  • Feng Q, Kanoh H, Ooi K (1999) Manganese oxide porous crystals. J Mater Chem 9(2):319–333

    Article  Google Scholar 

  • Fort A, Addabbo T, Vignoli V, Bertocci F, Mugnaini M, Atrei A, Gregorkiewitz M (2014) Gas-sensing properties and modeling of silver doped potassium hollandite. Sens Actuators B: Chem 194:427–439

    Article  Google Scholar 

  • Gao T, Norby P (2013) Frame stability of tunnel-structured cryptomelane nanofibers: the role of tunnel cations. Eur J Inorg Chem 28:4948–4957

    Google Scholar 

  • Golden DC, Dixon JB, Chen CC (1986) Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clay Clay Miner 34(5):511–520

    Article  Google Scholar 

  • Gómez-Caballero JA, Villaseñor-Cabral MG, Santiago-Jacinto P, Ponce-Abad F (2010) Hypogene Ba-rich todorokite and associated nanometric native silver in The San Miguel Tenango mining area, zacatlan, puebla, Mexico. Can Mineral 48(5):1237–1253

    Article  Google Scholar 

  • Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X (2012) Catalytically active single-atom sites fabricated from silver particles. Angew Chem 124(17):4274–4279

    Article  Google Scholar 

  • Jiang T, Yang Y, Huang Z, Zhang B (2002) Kinetics of silver leaching from manganese-silver associated ores in sulfuric acid solution in the presence of hydrogen peroxide. Metall Mater Trans B 33(6):813–816

    Article  Google Scholar 

  • Jiang T, Yang Y, Huang Z, Zhang B, Qiu G (2004) Leaching kinetics of pyrolusite from manganese–silver ores in the presence of hydrogen peroxide. Hydrometallurgy 72(1):129–138

    Article  Google Scholar 

  • Johnson EA, Post JE (2006) Water in the interlayer region of birnessite: Importance in cation exchange and structural stability. Am Mineral 91(4):609–618

    Article  Google Scholar 

  • Kijima N, Yasuda H, Sato T, Yoshimura Y (2001) Preparation and characterization of open tunnel oxide α-MnO2 precipitated by ozone oxidation. J Solid State Chem 159(1):94–102

    Article  Google Scholar 

  • Kolobov AV, Rogalev A, Wilhelm F, Jaouen N, Shima T, Tominaga J (2004) Thermal decomposition of a thin AgOx layer generating optical near-field. Appl Phys Lett 84(10):1641–1643

    Article  Google Scholar 

  • Lanson B, Drits VA, Silvester E, Manceau A (2000) Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am Mineral 85(5–6):826–838

    Article  Google Scholar 

  • Li L, King DL (2005) Synthesis and characterization of silver hollandite and its application in emission control. Chem Mater 17(17):4335–4343

    Article  Google Scholar 

  • Li SY, Li Y, Lai LR (1996) Technological mineralogy of silver in argentiferous deposits of China. Gelogoical Press, Beijing

    Google Scholar 

  • Liu SH, Tsai HM, Pao CW, Chiou JW, Ling DC, Pong WF, Hsu JH (2006) Electronic and magnetic properties of the Ag-doped Fe3O4 films studied by X-ray absorption spectroscopy. Appl Phys Lett 89(9):092112

    Article  Google Scholar 

  • Lopano CL, Heaney PJ, Post JE, Hanson J, Komarneni S (2007) Time-resolved structural analysis of K-and Ba-exchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction. Am Mineral 92(2–3):380–387

    Article  Google Scholar 

  • Manceau A, Lanson B, Drits VA (2002) Structure of heavy metal sorbed birnessite. Part III: results from powder and polarized extended X-ray absorption fine structure spectroscopy. Geochim Cosmochim Ac 66(15):2639–2663

    Article  Google Scholar 

  • McKeown DA, Gan H, Pegg IL (2005) Silver valence and local environments in borosilicate and calcium aluminoborate waste glasses as determined from X-ray absorption spectroscopy. J Non-cryst Solids 351(52):3826–3833

    Article  Google Scholar 

  • Meyer P, Rimsky A, Chevalier R (1978) Structure du nitrate d’argent à pression et température ordinaires. Exemple de cristal parfait. Acta Crystallogr Sect B 34:1457–1462

    Article  Google Scholar 

  • Norby P, Dinnebier R, Fitch AN (2002) Decomposition of silver carbonate; the crystal structure of two high-temperature modifications of Ag2CO3.. Inorg Chem 41:3628–3637

    Article  Google Scholar 

  • Özacar M, Poyraz AS, Genuino HC, Kuo CH, Meng Y, Suib SL (2013) Influence of silver on the catalytic properties of the cryptomelane and Ag-hollandite types manganese oxides OMS-2 in the low-temperature CO oxidation. Appl Catal A-Gen 462:64–74

    Article  Google Scholar 

  • Pasero M (2005) A short outline of the tunnel oxides. Rev Mineral Geochem 57(1):291–305

    Article  Google Scholar 

  • Peña J, Bargar JR, Sposito G (2015) Copper sorption by the edge surfaces of synthetic birnessite nanoparticles. Chem Geol 396:196–207

    Article  Google Scholar 

  • Post JE, Appleman DE (1988) Chalcophanite, ZnMn3O7•3(H2O): New crystal-structure determinations. Am Mineral 73(11–12):1401–1404

    Google Scholar 

  • Post JE, Burnham CW (1986) Modeling tunnel-cation displacements in hollandites using structure-energy calculations. Am Mineral 71(9–10):1178–1185

    Google Scholar 

  • Post JE, Heaney PJ (2014) Time-resolved synchrotron X-ray diffraction study of the dehydration behavior of chalcophanite. Am Mineral 99(10):1956–1961

    Article  Google Scholar 

  • Post JE, Veblen DR (1990) Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Mineral 75(5–6):477–489

    Google Scholar 

  • Post JE, Von Dreele RB, Buseck PR (1982) Symmetry and cation displacements in hollandites: structure refinements of hollandite, cryptomelane and priderite. Acta Crystallogr Sect B 38(4):1056–1065

    Article  Google Scholar 

  • Radtke AS, Taylor CM, Hewett DF (1967) Aurorite, argentian todorokite, and hydrous silver-bearing lead manganese oxide. Econ Geol 62(2):186–206

    Article  Google Scholar 

  • Randall SR, Sherman DM, Ragnarsdottir KV (1998) An extended X-ray absorption fine structure spectroscopy investigation of cadmium sorption on cryptomelane (KMn8O16). Chem Geol 151(1):95–106

    Article  Google Scholar 

  • Ravel B, Newville (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absoprtion spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541

    Article  Google Scholar 

  • Ravikumar R, Fuerstenau DW (1996) Silver sorption by manganese oxide. In MRS Proceedings 243:432–450

  • Ravikumar R, Fuerstenau DW, Waychunas GA (1998) Characterization of silver binding in cryptomelane by X-ray absorption spectroscopy. In MRS Proceedings 524:353–358

  • Shiota K, Nakamura T, Takaoka M, Nitta K, Oshita K, Fujimori T, Ina T (2017) Chemical kinetics of Cs species in an alkali-activated municipal solid waste incineration fly ash and pyrophyllite-based system using Cs K-edge in situ X-ray absorption fine structure analysis. Spectrochimica Acta Part B: Atomic Spectrosc 131:32–39

    Article  Google Scholar 

  • Silvester E, Manceau A, Drits VA (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS spectroscopy. Am Mineral 82(9–10):962–978

    Article  Google Scholar 

  • Suh IK, Ohta H, Waseda Y (1988) High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. J Mater Sci 23(2):757–760

    Article  Google Scholar 

  • Tian Q, Jiao C, Guo X (2012) Extraction of valuable metals from manganese–silver ore. Hydrometallurgy 119:8–15

    Article  Google Scholar 

  • Toner B, Manceau A, Webb SM, Sposito G (2006) Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochim Cosmochim Ac 70(1):27–43

    Article  Google Scholar 

  • Wu L, Xu F, Zhu Y, Brady AB, Huang J, Durham JL, Takeuchi KJ (2015) Structural defects of silver Hollandite, AgxMn8Oy, nanorods: dramatic impact on electrochemistry. ACS nano 9(8):8430–8439

    Article  Google Scholar 

  • Wyckoff RWG (1922) The crystal structure of silver oxide (Ag2O). Am J Sci Serie 5:3:184–188

    Article  Google Scholar 

  • Yin H, Li H, Wang Y, Ginder-Vogel M, Qiu G, Feng X, Liu F (2014) Effects of Co and Ni co-doping on the structure and reactivity of hexagonal birnessite. Chem Geol 381:10–20

    Article  Google Scholar 

  • Yin J, Takeuchi ES, Takeuchi KJ, Marschilok AC (2016) Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry. Inorg Chim Acta 453:230–237

    Article  Google Scholar 

  • Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of X-ray-absorption spectra. Phys Rev B 52(4):2995–3009

    Article  Google Scholar 

  • Ziyadanogullari R, Buyuksahin M (1995) Recovery of MnSO4 from low-grade pyrolusite ores, and of MnSO4 and silver from manganese-silver ores. Sep Sci Technol 30(3):477–486

    Article  Google Scholar 

Download references

Acknowledgements

We owe great thanks to the group members at beam line 14W1 at Shanghai Synchrotron Radiation Facility (SSRF) for the technical assistance with data collection and analyses. We gratefully acknowledge Dr. Dong Juncai at Institute of High Energy Physics Chinese Academy of Sciences and Dr. Yin Hui at Huazhong Agricultural University for their help on the XAS data processing. We greatly thank two anonymous reviewers for their suggestions. We thank the following funding agencies for supporting this work: the National Natural Science Foundation of China (Grant No. 41302030), the Fundamental Research Project of Chinese Academy of Geological Sciences (Grant No. YYWF201619), the National Key R&D Program of China (Grant No. 2016YFC0600605), and the China Geological Survey Program (DD20179152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenzi Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Li, Q., Chu, B. et al. Silver binding in argentiferous manganese oxide minerals investigated by synchrotron radiation X-ray absorption spectroscopy. Phys Chem Minerals 45, 679–693 (2018). https://doi.org/10.1007/s00269-018-0954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0954-1

Keywords

Navigation