Physics and Chemistry of Minerals

, Volume 45, Issue 7, pp 655–668 | Cite as

Spin-frustrated pyrochlore chains in the volcanic mineral kamchatkite (KCu3OCl(SO4)2)

Original Paper


Search of new frustrated magnetic systems is of a significant importance for physics studying the condensed matter. The platform for geometric frustration of magnetic systems can be provided by copper oxocentric tetrahedra (OCu4) forming the base of crystalline structures of copper minerals from Tolbachik volcanos in Kamchatka. The present work was devoted to a new frustrated antiferromagnetic—kamchatkite (KCu3OCl(SO4)2). The calculation of the sign and strength of magnetic couplings in KCu3OCl(SO4)2 has been performed on the basis of structural data by the phenomenological crystal chemistry method with taking into account corrections on the Jahn–Teller orbital degeneracy of Cu2+. It has been established that kamchatkite (KCu3OCl(SO4)2) contains AFM spin-frustrated chains of the pyrochlore type composed of cone-sharing Cu4 tetrahedra. Strong AFM intrachain and interchain couplings compete with each other. Frustration of magnetic couplings in tetrahedral chains is combined with the presence of electric polarization.


Magnetic mineral Kamchatkite KCu3OCl(SO4)2 Corner-sharing tetrahedral spin chains Geometrically frustrated Jahn–Teller effect Cu3Mo2O9 KCuF3 



The work was partially supported by the Program of Basic Research “Far East” (Far-Eastern Branch of Russian Academy of Sciences), Project No. 15-I-3-026.


  1. Anderson PW (1963). In: Seitz F, Turnbull D (eds) Solid state physics, vol 14. Academic, New York, pp 99–214Google Scholar
  2. Balents L (2010) Spin liquids in frustrated magnets. Nature 464:199–2008CrossRefGoogle Scholar
  3. Bramwell ST, Gingras MJP (2001) Spin ice state in frustrated magnetic pyrochlore materials. Science 294:1495–1501CrossRefGoogle Scholar
  4. Farmer JM, Boatner LA, Chakoumakos BC, Du M-H, Lance MJ, Rawn CJ, Bryan JC (2014) Structural and crystal chemical properties of rare-earth titanate pyrochlores. J Alloys Compd 605:63–70CrossRefGoogle Scholar
  5. Gaertner HR (1930) Neues jahrbuch fuer mineralogie, geologie und palaeontologie. Beilagen Abt A 61:1–30Google Scholar
  6. Goodenough JB (1955) Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys Rev 100:564–573CrossRefGoogle Scholar
  7. Goodenough JB (1963) Magnetism and the chemical bond. Wiley, New York, LondonGoogle Scholar
  8. Greedan JE (2001) Geometrically frustrated magnetic materials. J Mater Chem 11:37–53CrossRefGoogle Scholar
  9. Hamasaki T, Ide T, Kuroe H, Sekine T, Hase M, Tsukada I, Sakakibara T (2008) Successive phase transitions to antiferromagnetic and weak-ferromagnetic long-range order in the quasi-one-dimensional antiferromagnet Cu3Mo2O9. Phys Rev B 77:134419–134417CrossRefGoogle Scholar
  10. Harris MJ, Bramwell ST, McMorrow DF, Zeiske T, Godfrey KW (1997) Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys Rev Lett 79:2554–2557CrossRefGoogle Scholar
  11. Harris MJ, Bramwell ST, Holdsworth PCW, Champion JDM (1998) Liquid-gas critical behavior in a frustrated pyrochlore ferromagnet. Phys Rev Lett 81:4496–4499CrossRefGoogle Scholar
  12. Hase M, Kuroe H, Pomjakushin VY, Keller L, Tamura R, Terada N, Matsushita Y, Dönni A, Sekine T (2015) Magnetic structure of the spin-1/2 frustrated quasi-one-dimensional antiferromagnet Cu3Mo2O9: appearance of a partially disordered state. Phys Rev B 92:054425–054427CrossRefGoogle Scholar
  13. Hutchings MT, Samuelson EJ, Shirane G, Hirakawa K (1969) Neutron-diffraction determination of the antiferromagnetic structure of KCuF3. Phys Rev 188:919–923CrossRefGoogle Scholar
  14. Kanamori J (1959) Superexchange interaction and symmetry properties of electron orbitals. J Phys Chem Solids 10:87–98CrossRefGoogle Scholar
  15. Kikuchi H, Kunieda K, Fujii Y, Matsuo A, Kindo K (2016) Successive magnetic phase transitions in a novel frustrated magnet KCu3OCl(SO4)2. Submitted to Proc.HFM2016 (Taipei, 2016).
  16. Kunieda K, Kikuchi H, Fujii Y, Astuti F, Sari DR, Watanabe I (2017) Successive magnetic phase transition of the new frustrated compound KCu3OCl(SO4)2. RIKEN Accel Prog Rep 50:236. Google Scholar
  17. Kramers HA (1934) L’interaction entre les atomes Magnétogènes dans un cristal Paramagnétique. Physica 1:182–192CrossRefGoogle Scholar
  18. Krivovichev SV, Filatov SK (1999) Structural principles for minerals and inorganic compounds containing anion-centered tetrahedral. Am Mineral 84:1099–1106CrossRefGoogle Scholar
  19. Krivovichev SV, Filatov SK (2001) Crystal chemistry of minerals and inorganic compounds based on complexes of anion-centered tetrahedra. St. Petersburg University Press, St. PetersburgGoogle Scholar
  20. Krivovichev SV, Filatov SK, Semenova TF (1998) Types of cationic complexes based on oxocentred tetrahedra [OM4] in the crystal structures of inorganic compounds. Russ Chem Rev 67:137–155CrossRefGoogle Scholar
  21. Krivovichev SV, Mentre O, Siidra OI, Colmont M, Filatov SK (2013) Anion-centered tetrahedra in inorganic compounds. Chem Rev 113:6459–6535CrossRefGoogle Scholar
  22. Kugel’ K, Khomskii DI (1973) Crystal-structure and magnetic properties of substances with orbital degeneracy. Zh Eksp Teor Fiz 64:1429–1439Google Scholar
  23. Kugel’ KI, Khomskii DI (1982) The Jahn-Teller effect and magnetism: transition metal compounds. Sov Phys Usp 25:231–256CrossRefGoogle Scholar
  24. Kuroe H, Hamasaki T, Sekine T, Hase M, Oka K, Ito T, Eisaki H, Matsuda M (2010) Triplon-spinon hybridization in Cu3Mo2O9 observed using inelastic neutron scattering. J Phys Conf Ser 200:022028–022024CrossRefGoogle Scholar
  25. Kuroe H, Kino R, Hosaka T, Suzuki M, Hachiuma S, Sekine T, Hase M, Oka K, Ito T,. Eisaki H, Fujisawa M, Okubo S, Ohta H (2011a) Electric polarization induced by Néel order without magnetic superlattice: experimental study of Cu3Mo2O9 and numerical study of a small spin cluster. J Phys Soc Jpn 80:083705–083704CrossRefGoogle Scholar
  26. Kuroe H, Hamasaki T, Sekine T, Hase M, Oka K, Ito T, Eisaki H, Kaneko K, Metoki N, Matsuda M, Kakurai K (2011b) Hybridization of magnetic excitations between quasi-one-dimensional spin chains and spin dimers in Cu3Mo2O9 observed using inelastic neutron scattering. Phys Rev B 83:184423–184428CrossRefGoogle Scholar
  27. Matsumoto M, Kuroe H, Stkine T, Hase M (2012) Magnetic excitation and electric polarization in strongly coupled spin monomer and dimer system Cu3Mo2O9. J Phys Soc Jpn 81:024711–024714CrossRefGoogle Scholar
  28. Moessner R, Ramirez AP (2006) Geometrical frustration. Phys Today 59:24–29CrossRefGoogle Scholar
  29. Morris DJP, Tennant DA, Grigera SA, Klemke B, Castelnovo C, Moessner R, Czternasty C, Meissner M, Rule KC, Hoffmann J-U, Kiefer K, Gerischer S, Slobinsky D, Perry RS (2009) Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7. Science 326:411–414CrossRefGoogle Scholar
  30. Naruse K, Kawamata T, Ohno M, Matsuok Y, Hase M, Kuroe H, Sekine T, Oka K, Ito T, Eisaki H, Sasaki T, Koike Y (2015) Magnetic state of the geometrically frustrated quasi-one-dimensional spin system Cu3Mo2O9 studied by thermal conductivity. J Phys Soc Jpn 84:124601–124607CrossRefGoogle Scholar
  31. Oleś AM, Horsch P, Feiner LF, Khaliullin G (2006) Spin-orbital entanglement and violation of the Goodenough–Kanamori rules. Phys Rev Lett 96:147205–147204CrossRefGoogle Scholar
  32. Paolasini L, Caciuffo R, Sollier A, Ghigna P, Altarelli M (2002) Coupling between spin and orbital degrees of freedom in KCuF3. Phys Rev Lett 88:106403–106404CrossRefGoogle Scholar
  33. Ramirez AP, Hayashi A, Cava J, Siddharthan BS, Shastry R (1999) Zero-point entropy in ‘spin ice’. Nature 399:333–335CrossRefGoogle Scholar
  34. Reichelt W, Steiner U, Söhnel T, Oeckler O, Duppel V, Kienle L (2005) Mixed crystals in the system Cu3Mo2O9/Zn3Mo2O9. Z Anorg Allergy Chem 631:596–603CrossRefGoogle Scholar
  35. Reimers JN (1992) Absence of long-range order in a three-dimensional geometrically frustrated antiferromagnet. Phys Rev B 45:7287–7294CrossRefGoogle Scholar
  36. Reimers JN, Berlinsky AJ, Shi A-C (1991) Mean-field approach to magnetic ordering in highly frustrated pyrochlores. Phys Rev B 43:865–878CrossRefGoogle Scholar
  37. Satija SK, Axe JD, Shirane G, Yoshizawa H, Hirakawa K (1980) Neutron scattering study of spin waves in one-dimensional antiferromagnet KCuF3. Phys Rev B 21:2001–2007CrossRefGoogle Scholar
  38. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sect A 32:751–767CrossRefGoogle Scholar
  39. Snyder J, Slusky JS, Cava RJ, Schiffer P (2001) How `spin ice’ freezes. Nature 413:48–51CrossRefGoogle Scholar
  40. Sosin SS, Prozorova LA, Smirnov AI (2005) New magnetic states in crystals. Phys Usp 48:83–90CrossRefGoogle Scholar
  41. Steiner U, Reichelt W (1997) A Reinvestigation of Cu3Mo2O9, a compound containing copper(II) in compressed octahedral coordination. Acta Crystallogr C 53:1371–1373CrossRefGoogle Scholar
  42. Tanaka K, Konishi M, Marumo F (1979) Electron-density distribution in crystals of KCuF3 with Jahn–Teller distortion. Acta Cryst B 35:1303–1308CrossRefGoogle Scholar
  43. Towler MD, Dovesi R, Saunders VR (1995) Magnetic interactions and the cooperative Jahn–Teller effect in KCuF3. Phys Rev B 52:10150–10159CrossRefGoogle Scholar
  44. Varaksina TV, Fundamenskii VS, Filatov SK, Vergasova LP (1990) The crystal structure of kamchatkite, a new naturally occuring oxychloride sulphate of potassium and copper. Mineral Mag 54:613–616CrossRefGoogle Scholar
  45. Vergasova LP, Filatov SK (2012) New mineral species in products of fumarole activity of the Great Tolbachik Fissure Eruption. J Volcanol Seismol 6:281–289CrossRefGoogle Scholar
  46. Vilminot S, Gilles A, Kurmoo G M (2009) Magnetic properties and magnetic structure of Cu3Mo2O9. Inorg Chem 48(6):2687–2692CrossRefGoogle Scholar
  47. Volkova LM (2009) Role of crystal chemical factors in the formation of the magnetic structure of inorganic compounds. J Struct Chem 50(Suppl):S49–S59CrossRefGoogle Scholar
  48. Volkova LM, Marinin DV (2017) Frustrated Antiferromagnetic spin chains of edge-sharing tetrahedra in volcanic minerals K3Cu3(Fe0.82Al0.18)O2(SO4)4 and K4Cu4O2(SO4)4MeCl.30. J Supercond Nov Magn 30:959–971CrossRefGoogle Scholar
  49. Volkova LM, Polyshchuk SA (2005) New method to calculate the sign and relative strength of magnetic interactions in low-dimensional systems on the basis of structural data. J Supercond 18:583–598CrossRefGoogle Scholar
  50. Volkova LM, Polyshchuk SA (2009) Crystal chemistry aspects of the magnetically induced ferroelectricity in TbMn2O5 and BiMn2O5. J Phys Condens Matter 21:015903CrossRefGoogle Scholar
  51. Vonsovsky SV (1971) Magnetism. Nauka, Moscow (in Russian) [Vonsovsky SV (1974) Magnetism. Wiley, NY]Google Scholar
  52. Yamada I, Kato N (1994) Multi-sublattice magnetic structure of KCuF3 caused by the antisymmetric exchange interaction: antiferromagnetic resonance measurements. J Phys Soc Jpn 63:289–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistryFar Eastern Branch of Russian Academy of ScienceVladivostokRussia

Personalised recommendations