Skip to main content
Log in

Experimental cation redistribution in the tourmaline lucchesiite, CaFe2 +3Al6(Si6O18)(BO3)3(OH)3O

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Natural Mg-rich lucchesiite was thermally treated in air and hydrogen atmosphere up to 800 °C to study potential changes in Fe-, Mg- and Al ordering over the octahedrally coordinated Y- and Z-sites, and to explore possible applications to intracrystalline geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that thermal treatment of lucchesiite results in an increase of Fetot contents at Z balanced by an increase of Mg and Al at Y. This process is accompanied by a significant deprotonation of the O3 anion site. The Fe order–disorder reaction depends more on temperature, than on redox conditions. During heat treatment in H2, reduction of Fe3+ to Fe2+ was not observed despite strongly reducing conditions, indicating that the fO2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. On the basis of this and previous studies, the intersite order–disorder process induced by thermal treatment indicates that Fe redistribution is an important factor for Fe–Mg–Al-exchange and is significant at temperatures around 800 °C. As a result, Fe–Mg–Al intersite order–disorder is sensitive to temperature variations, whereas geothermometers based solely on Mg–Al order–disorder appear insensitive and involve large uncertainties. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks, and indicate that successful tourmaline geothermometers may be developed by thermal calibration of the Fe–Mg–Al order–disorder reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreozzi GB, Bosi F, Longo M (2008) Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. Am Mineral 93:658–666

    Article  Google Scholar 

  • Barton R Jr (1969) Refinement of the crystal structure of buergerite and the absolute orientation of tourmalines. Acta Crystallogr B25:1524–1533

    Article  Google Scholar 

  • Bosi F (2018) Tourmaline crystal chemistry. Am Mineral 103:298–306

    Article  Google Scholar 

  • Bosi F, Lucchesi S (2007) Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability. Am Mineral 92:1054–1063

    Article  Google Scholar 

  • Bosi F, Lucchesi S, Reznitskii L (2004) Crystal chemistry of the dravite-chromdravite series. Eur J Mineral 16:345–352

    Article  Google Scholar 

  • Bosi F, Reznitskii L, Skogby H (2012) Oxy-chromium-dravite, NaCr3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Mineral 97:2024–2030

    Article  Google Scholar 

  • Bosi F, Reznitskii L, Sklyarov EV (2013) Oxy-vanadium-dravite, NaV3(V4Mg2)(Si6O18)(BO3)3(OH)3O crystal structure and redefinition of the ‘vanadium-dravite’ tourmaline. Am Mineral 98:501–505

    Article  Google Scholar 

  • Bosi F, Andreozzi GB, Hålenius U, Skogby H (2015a) Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl. Mineral Mag 79:515–528

    Article  Google Scholar 

  • Bosi F, Skogby H, Lazor P, Reznitskii L (2015b) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Phys Chem Miner 42:441–453

    Article  Google Scholar 

  • Bosi F, Skogby H, Hålenius U (2016a) Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications. Contrib Mineral Petrol 171:47

    Article  Google Scholar 

  • Bosi F, Skogby H, Balić-Žunić T (2016b) Thermal stability of extended clusters in dravite: a combined EMP, SREF and FTIR study. Phys Chem Mineral 43:395–407

    Article  Google Scholar 

  • Bosi F, Skogby H, Ciriotti ME, Gadas P, Novák M, Cempírek J, Všianský D, Filip J (2017a) Lucchesiite, CaFe2 + 3Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Mineral Mag 81:1–14

    Article  Google Scholar 

  • Bosi F, Reznitskii L, Hålenius U, Skogby H (2017b) Crystal chemistry of Al-V-Cr oxy-tourmalines from Sludyanka complex, Lake Baikal, Russia. Eur J Mineral 29:457–472

    Article  Google Scholar 

  • Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr B41:244–247

    Article  Google Scholar 

  • Dutrow BL, Henry DJ (2011) Tourmaline: A geologic DVD. Elements 7:301–306

    Article  Google Scholar 

  • Ertl A, Schuster R, Hughes JM, Ludwig T, Meyer H-P, Finger F, Dyar MD, Ruschel K, Rossman GR, Klötzli U, Brandstätter F, Lengauer CL, Tillmanns E (2012a) Li-bearing tourmalines in Variscan pegmatites from the Moldanubian nappes, Lower Austria. Eur J Mineral 24:695–715

    Article  Google Scholar 

  • Ertl A, Kolitsch U, Dyar MD, Hughes JM, Rossman GR, Pieczka A, Henry DJ, Pezzotta F, Prowatke S, Lengauer CL, Körner W, Brandstätter F, Francis CA, Prem M, Tillmanns E (2012b) Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline. Am Mineral 97:1402–1416

    Article  Google Scholar 

  • Ferrow E (2009) Non-integral hybrid ions in tourmaline: buffering and geo-thermometry. Eur J Mineral 21:241–250

    Article  Google Scholar 

  • Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256

    Article  Google Scholar 

  • Fuchs Y, Lagache M, Linares J (1998) Fe-tourmaline synthesis under different T and ƒO2 conditions. Am Mineral 83:525–534

    Article  Google Scholar 

  • Gatta GD, Bosi F, McIntyre GJ, Skogby H (2014) First accurate location of two proton sites in tourmaline: A single-crystal neutron diffraction study of oxy-dravite. Mineral Mag 78:681–692

    Article  Google Scholar 

  • Gonzalez-Carreño T, Fernandez M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phys Chem Mineral 15:452–460

    Article  Google Scholar 

  • Grew ES, Krivovichev SV, Hazen RM, Hystad G (2016) Evolution of structural complexity in boron minerals. Can Mineral 54:125–143

    Article  Google Scholar 

  • Grice JD, Ercit TS (1993) Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. Neues Jahrb Mineral Abh 165:245–266

    Google Scholar 

  • Hawthorne FC (1996) Structural mechanisms for light-element variations in tourmaline. Can Mineral 34:123–132

    Google Scholar 

  • Hawthorne FC (2016) Short-range atomic arrangements in minerals. I: The minerals of the amphibole, tourmaline and pyroxene supergroups. Eur J Mineral 28:513–536

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib Mineral Petrol 112:203–218

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anvitz LM (eds) Boron: mineralogy, petrology and geochemistry, reviews in mineralogy and geochemistry, vol 33. Mineralogical Society of America, Chantilly, pp 503–557

    Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow B, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O-H stretching frequencies and O–H…O hydrogen bond lengths in minerals. Monatsh Chemie 130:1047–1059

    Google Scholar 

  • Lussier AJ, Aguiar PM, Michaelis VK, Kroeker S, Herwig S, Abdu Y, Hawthorne FC (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer spectroscopy. Mineral Mag 72:747–761

    Article  Google Scholar 

  • Lussier AJ, Hawthorne FC, Aguiar PM, Michaelis VK, Kroeker S (2011) Elbaite-liddicoatite from Black Rapids glacier, Alaska. Period Mineral 80:57–73

    Google Scholar 

  • Lussier A, Ball NA, Hawthorne FC, Henry DJ, Shimizu R, Ogasawara Y, Ota T (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure. Am Mineral 101:355–361

    Article  Google Scholar 

  • Marschall HR, Korsakov AV, Luvizotto GL, Nasdala L, Ludwig T (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. J Geol Soc 166:811–823

    Article  Google Scholar 

  • Mattson SM, Rossman GR (1984) Ferric iron in tourmaline. Phys Chem Mineral 11:225–234

    Article  Google Scholar 

  • Mattson SM, Rossman GR (1987) Fe2+–Fe3+ interactions in tourmaline. Phys Chem Mineral 14:163–171

    Article  Google Scholar 

  • Pieczka A, Kraczka J (2004) Oxidized tourmalines—a combined chemical, XRD and Mossbauer study. Eur J Mineral 16:309–321

    Article  Google Scholar 

  • Prescher C, McCammon C, Dubrowinsky L (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J Appl Cryst 45:329–331

    Article  Google Scholar 

  • Sheldrick GM (2013) SHELXL2013. University of Göttingen, Germany

    Google Scholar 

  • Skogby H, Bosi F, Lazor P (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Phys Chem Mineral 39:811–816

    Article  Google Scholar 

  • Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326

    Article  Google Scholar 

  • Taran MN, Rossman GR (2002) High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline. Am Mineral 87:1148–1153

    Article  Google Scholar 

  • Taran MN, Lebedev AS, Platonov AN (1993) Optical absorption spectroscopy of synthetic tourmalines. Phys Chem Mineral 20:209–220

    Article  Google Scholar 

  • van Hinsberg VJ, Schumacher JC (2007) Intersector element partitioning in tourmaline: a potentially powerful single crystal thermometer. Contrib Mineral Petrol 153:289–301

    Article  Google Scholar 

  • van Hinsberg VJ, Schumacher JC (2009) The geothermobarometric potential of tourmaline, based on experimental and natural data. Am Mineral 94:761–770

    Article  Google Scholar 

  • van Hinsberg VJ, Schumacher JC (2011) Tourmaline as a petrogenetic indicator mineral in the Haut-Allier metamorphic suite, Massif Central, France. Can Mineral 29:177–194

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16

    Article  Google Scholar 

  • van Hinsberg VJ, Franz G, Wood BJ (2017) Determining subduction-zone fluid composition using a tourmaline mineral probe. Geochem Persp Let 3:160–169

    Article  Google Scholar 

  • Vereshchagin OS, Setkova TV, Rozhdestvenskaya IV, Frank-Kamenetskaya OV, Deyneko DV, Pokholok KV (2016) Synthesis and crystal structure of Ga-rich, Fe-bearing tourmaline. Eur J Mineral 28:593–599

    Article  Google Scholar 

  • Watenphul A, Burgdorf M, Schlüter J, Horn I, Malcherek T, Mihailova B (2016) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. Eur J Mineral 101:970–985

    Google Scholar 

Download references

Acknowledgements

Funding by Sapienza University of Rome (Prog. Università 2016 to F.B.) and the Swedish Research Council (H.S.) is gratefully acknowledged. We are very grateful to E.S. Grew and D.J. Henry for constructive criticism that improved the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Bosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosi, F., Skogby, H., Hålenius, U. et al. Experimental cation redistribution in the tourmaline lucchesiite, CaFe2 +3Al6(Si6O18)(BO3)3(OH)3O. Phys Chem Minerals 45, 621–632 (2018). https://doi.org/10.1007/s00269-018-0947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0947-0

Keywords

Navigation