Skip to main content

The effects of non-hydrostatic stress on the structure and properties of alpha-quartz

Abstract

The study of the effects of non-hydrostatic stresses on rock-forming minerals is fundamental for understanding how minerals respond to tectonic stresses in the Earth’s interior. Larger deviatoric stresses of the order of GPa can arise from physical interaction between minerals (e.g. host–inclusion systems, compositional gradients) at the micrometric scale, even if at the large-scale large stresses are annealed by plastic flows. Thus, experimental data under hydrostatic pressure do not provide us access to all the possible modifications and structural changes experienced by minerals subjected to deviatoric stresses. Therefore, we carried out ab initio hybrid Hartree–Fock/Density Functional Theory simulations to determine the properties of alpha-quartz, since it is one of the most abundant minerals in the Earth’s crust with a very simple chemistry and structure. We calculated its structure, elastic parameters and Raman-active vibrational modes as a function of different applied strains, which allow us to show how phonon frequencies and structural parameters (bond lengths and angles) are affected by deviatoric stress conditions rather than hydrostatic pressure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Anderson OL (1995) Equations of state of solids for geophysics and ceramic science. Oxford University Press, Oxford

    Google Scholar 

  2. Angel RJ, Gonzalez-Platas J, Alvaro M (2014a) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kri 229:405–419

    Google Scholar 

  3. Angel RJ, Mazzucchelli ML, Alvaro M, Nimis P, Nestola F (2014b) Geobarometry from host-inclusion systems: the role of elastic relaxation. Am Mineral 99:2146–2149

    Article  Google Scholar 

  4. Angel RJ, Murri M, Mihailova B, Alvaro M (2018) Stress, strain and Raman shifts. Z Kri. https://doi.org/10.1515/zkri-2018-2112

    Google Scholar 

  5. Anzolini CPM, Alvaro M, Romano C, Vona A, Lorenzon S, Smith EM, Brenker FE, Nestola F (2018) Depth of formation of super-deep diamonds: Raman barometry of CaSiO3-walstromite inclusions. Am Mineral 103:69–74

    Article  Google Scholar 

  6. Barron THK, Collins JG, White GK (1980) Thermal expansion of solids at low temperatures. Adv Phys 29:609–730

    Article  Google Scholar 

  7. Bismayer U, Salje EKH, Joffrin C (1982) Reinvestigation of the stepwise character of the ferroelastic transition in lead phosphate-arsenate, Pb3(PO4)2–Pb3(AsO4)2. J Phys 43:1379–1388

    Article  Google Scholar 

  8. Briggs RJ, Ramdas AK (1977) Piezospectroscopy of the Raman spectrum of α-quartz. Phys Rev B 16:3815–3826

    Article  Google Scholar 

  9. Busing WL, Levy HA (1964) The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta Crystallogr 17:142–146

    Article  Google Scholar 

  10. Campomenosi N, Mazzucchelli ML, Mihailova BD, Scambelluri M, Angel RJ, Nestola F, Reali A, Alvaro M (2018) How geometry and anisotropy affect residual strain in host inclusion system: coupling experimental and numerical approaches. Am Mineral 103(12):2032–2035

    Article  Google Scholar 

  11. Cantrell JH (1980) Generalized Grüneisen tensor from solid nonlinearity parameters. Ph Rev B 21:4191–4195

    Article  Google Scholar 

  12. Carpenter MA, Salje EKH, Graeme-Barber A, Wruck B, Dove MT, Knight KS (1998) Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha-beta phase transition in quartz. Am Mineral 83:2–22

    Article  Google Scholar 

  13. Cionoiu STL, Moulas E, Stünitz H (2018) Phase transitions under differential stress: deviatoric stresses or pressure? Geophys Res Abstr 20:18504

    Google Scholar 

  14. Civalleri B, D’Arco P, Orlando R, Saunders V, Dovesi R (2001) Hartree–Fock geometry optimisation of periodic systems with the CRYSTAL code. Chem Phys Lett 348:131–138

    Article  Google Scholar 

  15. Clément M, Padrón-Navarta JA, Tommasi A, Mainprice D (2018) Non-hydrostatic stress field orientation inferred from orthopyroxene (Pbca) to low-clinoenstatite (P21/c) inversion in partially dehydrated serpentinites. Am Mineral 103:993–1001

    Article  Google Scholar 

  16. Coe RS, Kirby SH (1975) The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: mechanism and potential applications. Contrib Mineral Petrol 52(1):29–55

    Article  Google Scholar 

  17. Demuth T, Jeanvoine Y, Hafner J, Angyan J (1999) Polymorphism in silica studied in the local density and generalized-gradient approximations. J Phys Condens Mater 11:3833–3874

    Article  Google Scholar 

  18. Dove MT, Gamghir M, Heine V (1999) Anatomy of a structural phase transition: theoretical analysis of the displacive phase transition in quartz and other silicates. Phys Chem Miner 26:344–353

    Article  Google Scholar 

  19. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quant Chem 114:1287–1317

    Article  Google Scholar 

  20. Downs RT, Gibbs G, Bartelmehs KL, Boisen MB (1992) Variations of bond lengths and volumes of silicate tetrahedra with temperature. Am Mineral 77:751–757

    Google Scholar 

  21. Fischer M, Angel RJ (2017) Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations. J Chem Phys 146:174111

    Article  Google Scholar 

  22. Gallivan SM, Gupta YM (1995) Study of tensile deformation in shocked Z-cut, α – quartz using time resolved Raman spectroscopy. J Appl Phys 78:1557–1564

    Article  Google Scholar 

  23. Gibbs JW (1875) On the equilibrium of heterogeneous substances. First part. Trans Connect Acad Art Sci 3:108–248

    Google Scholar 

  24. Glinnemann J, King HE, Schulz H, Hahn T, La Placa SJ, Dacol F (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure. Z Kri 198:177–212

    Article  Google Scholar 

  25. Grüneisen E (1926) Zustand des festen Körpers. Handbuch der Physik

  26. Hazen RM, Finger LW, Hemley R, Mao H (1989) High-pressure crystal chemistry and amorphisation of alpha-quartz. Solid State Commun 72:507–511

    Article  Google Scholar 

  27. Hirth G, Tullis J (1994) The brittle-plastic transition in experimentally deformed quartz aggregates. J Geophys Res Solid Earth 99:11731–11747

    Article  Google Scholar 

  28. Hobbs BE, Ord A (2016) Does non-hydrostatic stress influence the equilibrium of metamorphic reactions? Earth Sci Rev 163:190–233

    Article  Google Scholar 

  29. Key SW (1967) Grüneisen tensor for anisotropic materials. J Appl Phys 38:2923–2928

    Article  Google Scholar 

  30. Kihara K (1990) A X-ray study of the temperature dependence of the quartz structure. Eur J Mineral 2:63–77

    Article  Google Scholar 

  31. Kihara K (2001) Molecular dynamics interpretation of structural changes in quartz. Phys Chem Miner 28:365–376

    Article  Google Scholar 

  32. Kimizuka H, Kaburaki H, Kogure Y (2003) Molecular-dynamics study of the high-temperature elasticity of quartz above theα–β phase transition. Phys Rev B 67:024105

    Article  Google Scholar 

  33. Kim-Zajonz J, Werner S, Schulz H (1999) High pressure single crystal X-ray diffraction study on ruby up to 31 GPa. Z Kristallogr 214:331–336

    Google Scholar 

  34. Kirby SH, Stern LA (1993) Experimental dynamic metamorphism of mineral single crystals. J Struct Geol 15:1223–1240

    Article  Google Scholar 

  35. Korsakov AV, Perraki M, Zhukov VP, De Gussem K, Vandenabeele P, Tomilenko AA (2009) Is quartz a potential indicator of ultrahigh-pressure metamorphism? Laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets. Eur J Mineral 21:1313–1323

    Article  Google Scholar 

  36. Kuzmany H (2009) Solid-state spectroscopy: an introduction. Springer, New York

    Book  Google Scholar 

  37. Lakshtanov DL, Sinogeilin SV, Bass JD (2007) High-temperature phase transitions and elasticity of silica polymorphs. Phys Chem Miner 34:11–22

    Article  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  39. Levien L, Prewitt CT, Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Mineral 65:920–930

    Google Scholar 

  40. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 12:5188–5193

    Article  Google Scholar 

  41. Murri M, Mazzucchelli ML, Campomenosi N, Korsakov AV, Prencipe M, Mihailova B, Scambelluri M, Angel RJ, Alvaro M (2018) Raman elastic geobarometry for anisotropic mineral inclusions. Am Mineral 103:1869–1872

    Google Scholar 

  42. Nestola FPM, Nimis P, Sgreva N, Perritt SH, Chinn IL, Zaffiro G (2018) Toward a robust elastic geobarometry of kyanite inclusions in eclogitic diamonds. J Geophys Res Solid Earth 123:6411–6423

    Google Scholar 

  43. Pascale F, Zicovich-Wilson CM, Lopez Gejo F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888–897

    Article  Google Scholar 

  44. Pascale F, Zicovich-Wilson CM, Orlando R, Roetti C, Ugliengo P, Dovesi R (2005) Vibration frequencies of Mg3Al2Si3O12 pyrope. An ab initio study with the CRYSTAL code. J Phys Chem B 109:6146–6152

    Article  Google Scholar 

  45. Prencipe M (2012) Simulation of vibrational spectra of crystals by ab initio calculations: an invaluable aid in the assignment and interpretation of the Raman signals. The case of jadeite (NaAlSi2O6). J Raman Spectrosc 43:1567–1569

    Article  Google Scholar 

  46. Prencipe M (2018) Quantum mechanics in earth sciences: a one-century-old story. Rend Fis Acc Lincei. https://doi.org/10.1007/s12210-018-0744-1

    Google Scholar 

  47. Prencipe M, Scanavino I, Nestola F, Merlini M, Civalleri B, Bruno M, Dovesi R (2011) High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Phys Chem Miner 38:223–239

    Article  Google Scholar 

  48. Richter B, Stunitz H, Heilbronner R (2016) Stresses and pressures at the quartz-to-coesite phase transformation in shear deformation experiments. J Geophys Res Solid Earth 121:8015–8033

    Article  Google Scholar 

  49. Robinson K, Gibbs G, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  50. Rosenfeld JL, Chase AB (1961) Pressure and temperature of crystallization from elastic effects around solid inclusion minerals? Am J Sci 259:519–541

    Article  Google Scholar 

  51. Scheidl KS, Schaeffer A-K, Petrishcheva E, Habler G, Fischer FD, Schreuer J, Abart R (2014) Chemically induced fracturing in alkali feldspar. Phys Chem Miner 41:1–16

    Article  Google Scholar 

  52. Scheidl KS, Kurnosov A, Trots DM, Boffa Ballaran T, Angel RJ, Miletich R (2016) Extending the single-crystal quartz pressure gauge up to hydrostatic pressure of 19 GPa. J Appl Crystallogr 49:2129–2137

    Article  Google Scholar 

  53. Schmidt C, Ziemann MA (2000) In-situ Raman spectroscopy of quartz: a pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. Am Mineral 85:1725–1734

    Article  Google Scholar 

  54. Scott JF, Porto SPS (1967) Longitudinal and transverse optical lattice vibrations in quartz. Phys Rev 161:903–910

    Article  Google Scholar 

  55. Shapiro SM, O’Shea DC, Cummins HZ (1967) Raman scattering study of the alpha-beta phase transition in quartz. Phys Rev Lett 19:361–364

    Article  Google Scholar 

  56. Stangarone C, Tribaudino M, Prencipe M, Lottici PP (2016) Raman modes in Pbca enstatite (Mg2Si2O6): an assignment by quantum mechanical calculation to interpret experimental results. J Raman Spectrosc 47:1247–1258

    Article  Google Scholar 

  57. Stangarone C, Böttger U, Bersani D, Tribaudino M, Prencipe M (2017) Ab initio simulations and experimental Raman spectra of Mg2SiO4 forsterite to simulate Mars surface environmental conditions. J Raman Spectrosc 48:1528–1535

    Article  Google Scholar 

  58. Tarumi R, Nakamura K, Ogi H, Hirao M (2007) Complete set of elastic and piezoelectric coefficients of α-quartz at low temperatures. J Appl Phys 102

  59. Tucker MG, Keen DA, Dove MT (2001) A detailed structural characterization of quartz on heating through the α–β phase transition. Mineral Magn 65:489–507

    Article  Google Scholar 

  60. Valenzano L, Torres FJ, Doll K, Pascale F, Zicovich-Wilson CM, Dovesi R (2006) Ab initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite. Z Phys Chem 220:893–912

    Article  Google Scholar 

  61. Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Leipzig

    Google Scholar 

  62. Wheeler J (2014) Dramatic effects of stress on metamorphic reactions. Geology 42:647–650

    Article  Google Scholar 

  63. Wheeler J (2018) The effects of stress on reactions in the Earth: sometimes rather mean, usually normal, always important. J Metamorph Geol 36:439–461

    Article  Google Scholar 

  64. Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73

  65. Zhang Y (1998) Mechanical and phase equilibria in inclusion–host systems. Earth Planet Sci Lett 157:209–222

    Article  Google Scholar 

  66. Ziman JM (1960) Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

This project received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program grant agreement 714936 and from the M.I.U.R.–F.A.R.E–IMPACT (n. R164WEJAHH) grant awarded to Matteo Alvaro. The manuscript has greatly benefited from the reviews of Mario Tribaudino and one anonymous reviewer.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Murri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CIF 111 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murri, M., Alvaro, M., Angel, R.J. et al. The effects of non-hydrostatic stress on the structure and properties of alpha-quartz. Phys Chem Minerals 46, 487–499 (2019). https://doi.org/10.1007/s00269-018-01018-6

Download citation

Keywords

  • Quartz
  • Deviatoric stress
  • Grüneisen tensor
  • Raman spectroscopy
  • Ab initio HF/DFT