Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 4, pp 333–342 | Cite as

Neutron and X-ray total scattering study of hydrogen disorder in fully hydrated hydrogrossular, Ca3Al2(O4H4)3

  • David A. Keen
  • Dean S. Keeble
  • Thomas D. Bennett
Original Paper

Abstract

The structure of fully hydrated grossular, or katoite, contains an unusual arrangement of four O–H bonds within each O4 tetrahedra. Neutron and X-ray total scattering from a powdered deuterated sample have been measured to investigate the local arrangement of this O4D4 cluster. The O–D bond length determined directly from the pair distribution function is 0.954 Å, although the Rietveld-refined distance between average O and D positions was slightly smaller. Reverse Monte Carlo refinement of supercell models to the total scattering data show that other than the consequences of this correctly determined O–D bond length, there is little to suggest that the O4D4 structure is locally significantly different from that expected based on the average structure determined solely from Bragg diffraction.

Keywords

Katoite Neutron diffraction X-ray diffraction Pair distribution function Total scattering 

Notes

Acknowledgements

TDB thanks the Royal Society and Trinity Hall (University of Cambridge) for funding. DAK is grateful to George Lager for pointing out the interest in fully characterizing the O4D4 structure in katoite. This work was carried out with the support of the Diamond Light Source (proposal EE15676).

Supplementary material

269_2017_923_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 KB)

References

  1. Artioli G, Lamberti C, Marra GL (2000) Neutron powder diffraction study of orthorhombic and monoclinic defective silicalite. Acta Cryst B 56:2CrossRefGoogle Scholar
  2. Bordiga S, Roggero I, Ugliengo P, Zecchina A, Bolis V, Artioli G, Buzzoni R, Marra G, Rivetti F, Spanò G, Lamberti C (2000) Characterisation of defective silicalites. J Chem Soc Dalton Trans 2000:3921CrossRefGoogle Scholar
  3. Chupas PJ, Qiu X, Hanson JC, Lee PL, Grey CP, Billinge SJL (2003) Rapid-acquisition pair distribution function (RA-PDF) analysis. J Appl Cryst 36:1342–1347CrossRefGoogle Scholar
  4. Császár AG, Czakó G, Furtenbacher T, Tennyson J, Szalay V, Shirin SV, Zobov NF, Polyansky OL (2005) On equilibrium structures of the water molecule. J Chem Phys 122:2124305CrossRefGoogle Scholar
  5. Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals, vol 1A, 2nd edn. Orthosilicates. The Geological Society (London)Google Scholar
  6. Dove MT, Keen DA, Hannon AC, Swainson IP (1997) Direct measurement of the Si–O bond length and orientational disorder in β-cristobalite. Phys Chem Miner 24:311–317CrossRefGoogle Scholar
  7. Foreman DW Jr (1968) Neutron and X-ray diffraction study of Ca3Al2 (O4D4)3, a Garnetoid. J Chem Phys 48:3037CrossRefGoogle Scholar
  8. Hannon AC (2005) Results on disordered materials from the general materials diffractometer, GEM, at ISIS. Nucl Instrum Meth A 551:88–107CrossRefGoogle Scholar
  9. Keen DA (2001) A comparison of various commonly used correlation functions for describing total scattering. J Appl Cryst 34:172–177CrossRefGoogle Scholar
  10. Keen DA, Goodwin AL (2015) The crystallography of correlated disorder. Nature 521:303–309CrossRefGoogle Scholar
  11. Keen DA, Nield VM (2001) Diffuse neutron scattering from crystalline materials. Oxford University Press, Oxford UKGoogle Scholar
  12. Keppler H, Smyth JR (eds) (2006) Water in nominally anhydrous minerals. Rev Miner Geochem 62Google Scholar
  13. Lager GA, Armbruster, Th, Faber J (1987) Neutron and X-ray diffraction study of hydrogarnet Ca3Al2(O4H4)3. Am Miner 72:756Google Scholar
  14. Lager GA, Downs RT, Origlieri M, Garoutte R (2002) High-pressure single-crystal X-ray diffraction study of katoite hydrogarnet: Evidence for a phase transition from Ia3dI{\bar 4}3d symmetry at 5GPa. Am Miner 87:642CrossRefGoogle Scholar
  15. Lager GA, Marshall WG, Liu Z, Downs RT (2005) Re-examination of the hydrogarnet structure at high pressure using neutron powder diffraction and infrared spectroscopy. Am Miner 90:639CrossRefGoogle Scholar
  16. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR-86-748Google Scholar
  17. Nobes RH, Akhmatskaya EV, Milman V, White JA, Winkler B, Pickard CJ (2000) An ab initio study of hydrogarnets. Am Miner 85:1706CrossRefGoogle Scholar
  18. Pascale F, Ugliengo P, Civalleri B, Orlando R, D’Arco P, Dovesi R (2002) Hydrogarnet defect in chabazite and sodalite zeolites: a periodic Hartree-Fock and B3-LYP study. J Chem Phys 117:5337CrossRefGoogle Scholar
  19. Pigott JS, Wright K, Gale JD, Panero WR (2015) Calculation of the energetics of water incorporation in majorite garnet. Am Miner 100:1065CrossRefGoogle Scholar
  20. Purton J, Jones R, Heggie M, Öberg S, Catlow, C R A (1992) LDF Pseudopotential calculations of the alpha-quartz structure and hydrogarnet defect. Phys Chem Miner 18:389CrossRefGoogle Scholar
  21. Soper AK (2011) GudrunN amd GudrunX: Programs for correcting raw neutron and X-ray diffraction data to differential scattering cross-sections. Rutherford Appleton Laboratory Technical Report RAL-TR-2011-013Google Scholar
  22. Soper AK, Barney ER (2011) Extracting the pair distribution function from white-beam X-ray total scattering data. J Appl Cryst 44:714–726CrossRefGoogle Scholar
  23. Soper AK, Benmore CJ (2008) Quantum differences between heavy and light water. Phys Rev Lett 101:065502CrossRefGoogle Scholar
  24. Spektor K, Nylen J, Stoyanov E, Navrotsky A, Hervig RL, Leinenweber K, Holland GP, Häussermann U (2011) Ultrahydrous stishovite from high-pressure hydrothermal treatment of SiO2. Proc Nat Acad Sci 108:20918CrossRefGoogle Scholar
  25. Stalder R, Konzett J (2012) OH defects in quartz in the system quartz–albite–water and granite–water between 5 and 25 bar. Phys Chem Miner 39:817CrossRefGoogle Scholar
  26. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210CrossRefGoogle Scholar
  27. Tucker MG, Keen DA, Dove MT, Goodwin AL, Hu Q (2007) RMCProfile: reverse Monte Carlo for polycrystalline materials. J Phys Condensed Matter 19:335218CrossRefGoogle Scholar
  28. Voicu G, Ghițulică CD, Andronescu E (2012) Modified Pechini synthesis of tricalcium aluminate powder. Mater Character 73:89CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.ISIS Facility, Rutherford Appleton LaboratoryDidcotUK
  2. 2.Diamond Light SourceDidcotUK
  3. 3.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations