Skip to main content

First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent Hubbard U

Abstract

It has been proposed that iron has a significant effect on the relative stability of carbonate phases at high pressures, possibly even stabilizing double-cation carbonates (e.g., dolomite) with respect to single-cation carbonates (e.g., magnesite, aragonite and siderite). X-ray diffraction experiments have shown that dolomite transforms at ~35 GPa to a high-pressure polymorph that is stable to decomposition; however, there has been disagreement on the structure of the high-pressure phase (Mao et al. in Geophys Res Lett 38, 2011. doi:10.1029/2011GL049519; Merlini et al. in Proc Natl Acad Sci 109:13509–13514, 2012. doi:10.1073/pnas.1201336109). Ab initio calculations interfaced with an evolutionary structure prediction algorithm demonstrated that a C2/c polymorph of pure CaMg(CO3)2 dolomite is more stable than previously reported structures (Solomatova and Asimow in Am Mineral 102:210–215, 2017, doi:10.2138/am-2017-5830). In this study, we calculate the relative enthalpies up to 80 GPa for a set of carbonate phases including Fe-bearing solutions and endmembers, using the generalized gradient approximation and a Hubbard U parameter calculated through linear response theory to accurately characterize the electronic structure of Fe. When calculated with a constant U of 4 eV, the spin transition pressure of (Mg,Fe)CO3 agrees well with experiments, whereas an internally consistent U overestimates the spin transition pressure by ~50 GPa. However, whether we use constant or internally consistent U values, a higher iron concentration increases the stability field of dolomite C2/c with respect to single-cation carbonate assemblages, but iron-free dolomite is not stable with respect to single-cation carbonates at any pressure. Thus, high-pressure polymorphs of Fe-bearing dolomite could in fact represent an important reservoir for carbon storage within oxidized sections of Earth’s mantle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anders E, Owen T (1977) Mars and earth: origin and abundance of volatiles. Science 198:453–465. doi:10.1126/science.198.4316.453

    Article  Google Scholar 

  2. Badaut V, Zeller P, Dorado B, Schlegel ML (2010) Influence of exchange correlation on the symmetry and properties of siderite according to density-functional theory. Phys Rev B 82:205121. doi:10.1103/PhysRevB.82.205121

    Article  Google Scholar 

  3. Becker H, Altherr R (1992) Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature 358:745–748. doi:10.1038/358745a0

    Article  Google Scholar 

  4. Bengtson A, Persson K, Morgan D (2008) Ab initio study of the composition dependence of the pressure-induced spin crossover in perovskite (Mg1−x , Fex)SiO3. Earth Planet Sci Lett 265:535–545. doi:10.1016/Jepsl.2007.10.049

    Article  Google Scholar 

  5. Bizette H (1951) État expérimental de la question de l’antiferromagnétisme. J Phys Radium 12:161–169. doi:10.1051/jphysrad:01951001203016100

    Article  Google Scholar 

  6. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  7. Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in the deep Earth. Proc Natl Acad Sci 108:5184–5187. doi:10.1073/pnas.1016934108

    Article  Google Scholar 

  8. Boulard E, Menguy N, Auzende AL, Benzerara K, Bureau H, Antonangeli D, Corgne A, Morard G, Siebert J, Perrillat JP, Guyot F, Fiquet G (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res Solid Earth 117:B02208

    Article  Google Scholar 

  9. Boulard E, Pan D, Galli G, Liu Z, Mao WL (2015) Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun. doi:10.1038/ncomms7311

    Google Scholar 

  10. Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Kaminsky F (2006) CO2-recycling to the deep convecting mantle. Geochim Cosmochim Acta. doi:10.1016/Jgca.2006.06.236

    Google Scholar 

  11. Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9. doi:10.1016/Jepsl.2007.02.038

    Article  Google Scholar 

  12. Brik MG (2011) First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO3 and calcite CaCO3. Phys B 406(4):1004–1012. doi:10.1016/j.physb.2010.12.049

    Article  Google Scholar 

  13. Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature. Am Mineral 91:435–440. doi:10.2138/Am2006.1910

    Article  Google Scholar 

  14. Burke K, Perdew JP, Wang Y (1998) Derivation of a generalized gradient approximation: the PW91 density functional. In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory. Springer, Boston, pp 81–111

    Chapter  Google Scholar 

  15. Cerantola V, Bykova E, Kupenko I, Merlini M, Ismailova L, McCammon C, Bykov M, Chumakov AI, Petitgirard S, Kantor I, Svitlyk V, Jacobs J, Hanfland M, Mezouar M, Prescher C, Rüffer R, Prakapenka VB, Dubrovinsky L (2017) Stability of iron-bearing carbonates in the deep Earth’s interior. Nat Commun. doi:10.1038/ncomms15960

    Google Scholar 

  16. Cococcioni M, De Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B 71:035105. doi:10.1103/PhysRevB.71.035105

    Article  Google Scholar 

  17. Dorogokupets PI (2007) Equation of state of magnesite for the conditions of the Earth’s lower mantle. Geochem Int 45:561–568. doi:10.1134/S0016702907060043

    Article  Google Scholar 

  18. Efthimiopoulos I, Jahn S, Kuras A, Schade U, Koch-Müller M (2017) Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification. Phys Chem Min. doi:10.1007/s00269-017-0874-5

    Google Scholar 

  19. Eggler DH (1987) Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 21–41

    Google Scholar 

  20. Farfan G, Wang S, Ma H, Caracas R, Mao WL (2012) Bonding and structural changes in siderite at high pressure. Am Mineral 97:1421–1426. doi:10.2138/am.2012.4001

    Article  Google Scholar 

  21. Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M (2002) Structural refinements of magnesite at very high pressure. Am Mineral 87:1261–1265. doi:10.2138/am-2002-8-927

    Article  Google Scholar 

  22. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. doi:10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  23. Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Min 20:1–18. doi:10.1007/BF00202245

    Google Scholar 

  24. Hammouda T, Andrault D, Koga K, Katsura T, Martin AM (2011) Ordering in double carbonates and implications for processes at subduction zones. Contrib Mineral Petro 161:439–450. doi:10.1007/s00410-010-0541-z

    Article  Google Scholar 

  25. Hirschmann MM, Dasgupta R (2009) The H/C ratios of earth’s near-surface and deep reservoirs, and consequences for deep earth volatile cycles. Chem Geol 262:4–16. doi:10.1016/Jchemgeo.2009.02.008

    Article  Google Scholar 

  26. Hossain FM, Dlugogorski BZ, Kennedy EM, Belova IV, Murch GE (2010) Electronic, optical and bonding properties of MgCO3. Solid State Comm 150:848–851. doi:10.1016/j.ssc.2010.02.008

    Article  Google Scholar 

  27. Hsu H, Huang SC (2016) Spin crossover and hyperfine interactions of iron in (Mg, Fe)CO3 ferromagnesite. Phys Rev B 94:060404. doi:10.1103/PhysRevB.94.060404

    Article  Google Scholar 

  28. Hsu H, Blaha P, Cococcioni M, Wentzcovitch RM (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys Rev Lett 106:118501. doi:10.1103/PhysRevLett106.118501

    Article  Google Scholar 

  29. Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63. doi:10.1038/nature02181

    Article  Google Scholar 

  30. Jacobs IS (1963) Metamagnetism of siderite (FeCO3). J Appl Phys 34:1106–1107. doi:10.1063/1.1729389

    Article  Google Scholar 

  31. Kaminsky F, Zakharchenko O, Davies R, Griffin W, Khachatryan-Blinova G, Shiryaev A (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140:734–753. doi:10.1007/s004100000221

    Article  Google Scholar 

  32. Kato T, Enami M, Zhai M (1997) Ultra-high-pressure (UHP) marble and eclogite in the Su-Lu UHP terrane, eastern China. J Metamorph Geol 15:169–182. doi:10.1111/J1525-1314.1997.00013.x

    Article  Google Scholar 

  33. Katsura T, Tsuchida Y, Ito E, Yagi T, Utsumi W, Akimoto SI (1991) Stability of magnesite under the lower mantle conditions. Proc Jpn Acad Series B 67:57–60. doi:10.2183/pjab.67.57

    Article  Google Scholar 

  34. Konstantinova E, Dantas SO, Barone PM (2006) Electronic and elastic properties of two-dimensional carbon planes. Phys Rev B 74:035417. doi:10.1103/PhysRevB.74.035417

    Article  Google Scholar 

  35. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. doi:10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  36. Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97:103001. doi:10.1103/PhysRevLett.97.103001

    Article  Google Scholar 

  37. Lavina B, Dera P, Downs RT, Prakapenka V, Rivers M, Sutton S, Nicol M (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Lett. doi:10.1029/2009GL039652

    Google Scholar 

  38. Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82:064110. doi:10.1103/PhysRevB.82.064110

    Article  Google Scholar 

  39. Lin JF, Struzhkin VV, Jacobsen S, Hu MY, Chow P, Kung J, Liu H, Mao H, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature 436:377–380. doi:10.1038/nature03825

    Article  Google Scholar 

  40. Lin JF, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Mineral 97:583–591. doi:10.2138/Am2012.3961

    Article  Google Scholar 

  41. Liu J, Lin JF, Prakapenka VB (2015) High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep. doi:10.1038/srep07640

    Google Scholar 

  42. Mao Z, Armentrout M, Rainey E, Manning CE, Dera P, Prakapenka VB, Kavner A (2011) Dolomite III: a new candidate lower mantle carbonate. Geophys Res Lett. doi:10.1029/2011GL049519

    Google Scholar 

  43. Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature; evidence for dolomite breakdown to aragonite and magnesite. Am Mineral 81:611–624. doi:10.2138/am-1996-5-608

    Article  Google Scholar 

  44. Mattila A, Pylkkanen T, Rueff JP, Huotari S, Vanko G, Hanfland M, Lehtinen M, Hamalainen K (2007) Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. J Phys Condens Matter 19:386206. doi:10.1088/0953-8984/19/38/386206

    Article  Google Scholar 

  45. Mattsson AE, Armiento R, Schultz PA, Mattsson TR (2006) Nonequivalence of the generalized gradient approximations PBE and PW91. Phys Rev B 73:195123. doi:10.1103/PhysRevB.73.195123

    Article  Google Scholar 

  46. Medeiros SK, Albuquerque EL, Maia FF, Caetano EWS, Freire VN (2006) Structural, electronic, and optical properties of CaCO3 aragonite. Chem Phys Lett 430:293–296. doi:10.1016/j.cplett.2006.08.133

    Article  Google Scholar 

  47. Merlini M, Crichton WA, Hanfland M, Gemmi M, Müller H, Kupenko I, Dubrovinsky L (2012) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc Natl Acad Sci 109:13509–13514. doi:10.1073/pnas.1201336109

    Article  Google Scholar 

  48. Ming X, Wang XL, Du F, Yin JW, Wang CZ, Chen G (2012) First-principles study of pressure-induced magnetic transition in siderite FeCO3. J Alloys Compd 510:L1–L4. doi:10.1016/Jjallcom.2011.08.079

    Article  Google Scholar 

  49. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  50. Nagai T, Ishido T, Seto Y, Nishio-Hamane D, Sata N, Fujino K (2010) Pressure-induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements. J Phys Conf Ser 215:012002. doi:10.1088/1742-6596/215/1/012002

    Article  Google Scholar 

  51. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704. doi:10.1063/1.2210932

    Article  Google Scholar 

  52. Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103. doi:10.1016/Jepsl.2005.10.014

    Article  Google Scholar 

  53. Oganov AR, Ono S, Ma Y, Glass CW, Garcia A (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47. doi:10.1016/Jepsl.2008.06.005

    Article  Google Scholar 

  54. Oganov AR, Hemley RJ, Hazen RM, Jones AP (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. Rev Mineral Geochem 75:47–77. doi:10.2138/rmg.2013.75.3

    Article  Google Scholar 

  55. Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671. doi:10.2138/Am2005.1610

    Article  Google Scholar 

  56. Panchmatia PM, Sanyal B, Oppeneer PM (2008) GGA + U modeling of structural, electronic, and magnetic properties of iron porphyrin-type molecules. Chem Phys 343:47–60. doi:10.1016/JchemPhys2007.10.030

    Article  Google Scholar 

  57. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. doi:10.1103/PhysRevLett77.3865

    Article  Google Scholar 

  58. Persson K, Bengtson A, Ceder G, Morgan D (2006) Ab initio study of the composition dependence of the pressure-induced spin transition in the (Mg1−x , Fex)O system. Geophys Res Lett. doi:10.1029/2006GL026621

    Google Scholar 

  59. Santillán J, Williams Q (2004a) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys Earth Planet Int 143:291–304. doi:10.1016/Jpepi.2003.06.007

    Article  Google Scholar 

  60. Santillán J, Williams Q (2004b) A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am Mineral 89:1348–1352. doi:10.2138/am-2004-8-925

    Article  Google Scholar 

  61. Santillán J, Williams Q, Knittle E (2003) Dolomite-II: a high-pressure polymorph of CaMg(CO3)2. Geophys Res Lett. doi:10.1029/2002GL016018

    Google Scholar 

  62. Segall MD, Lindan PJ, Probert MA, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717. doi:10.1088/0953-8984/14/11/301

    Article  Google Scholar 

  63. Shatskiy AF, Litasov KD, Palyanov YN (2015) Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russ Geo Geophys 56:113–142. doi:10.1016/Jrgg.2015.01.007

    Article  Google Scholar 

  64. Shcheka SS, Wiedenbeck M, Frost DJ, Keppler H (2006) Carbon solubility in mantle minerals. Earth Planet Sci Lett 245:730–742. doi:10.1016/j.epsl.2006.03.036

    Article  Google Scholar 

  65. Shi H, Luo W, Johansson B, Ahuja R (2008) First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3. Phys Rev B 78:155119. doi:10.1103/PhysRevB.78.155119

    Article  Google Scholar 

  66. Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742. doi:10.1038/343742a0

    Article  Google Scholar 

  67. Solomatova NV, Asimow PD (2017) Ab initio study of the structure and stability of CaMg(CO3)2 at high pressure. Am Mineral 102:210–215. doi:10.2138/am-2017-5830

    Article  Google Scholar 

  68. Solomatova NV, Jackson JM, Sturhahn W, Wicks JK, Zhao J, Toellner TS, Kalkan B, Steinhardt WM (2016) Equation of state and spin crossover of (Mg, Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary. Am Mineral 101:1084–1093. doi:10.2138/am-2016-5510

    Article  Google Scholar 

  69. Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci 102:17918–17922. doi:10.1073/pnas.0508919102

    Article  Google Scholar 

  70. Umemoto K, Wentzcovitch RM, Yonggang GY, Requist R (2008) Spin transition in (Mg, Fe)SiO3 perovskite under pressure. Earth Planet Sci Lett 276:198–206. doi:10.1016/Jepsl.2008.09.025

    Article  Google Scholar 

  71. Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57. doi:10.1126/science.1209300

    Article  Google Scholar 

  72. Wang X, Liou JG (1993) Ultra-high-pressure metamorphism of carbonate rocks in the Dabie Mountains, central China. J Metamorph Geol 11:575–588. doi:10.1111/J1525-1314.1993.tb00173.x

    Article  Google Scholar 

  73. Wang A, Pasteris JD, Meyer HO, Dele-Duboi ML (1996) Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet Sci Lett 141:293–306. doi:10.1016/0012-821X(96)00053-2

    Article  Google Scholar 

  74. Wirth R, Vollmer C, Brenker F, Matsyuk S, Kaminsky F (2007) Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth Planet Sci Lett 259:384–399. doi:10.1016/Jepsl.2007.04.041

    Article  Google Scholar 

  75. Zucchini A, Comodi P, Nazzareni S, Hanfland M (2014) The effect of cation ordering and temperature on the high-pressure behaviour of dolomite. Phys Chem Min 41:783–793. doi:10.1007/s00269-014-0691-z

    Article  Google Scholar 

  76. Zucchini A, Prencipe M, Belmonte D, Comodi P (2017) Ab initio study of the dolomite to dolomite-II high-pressure phase transition. Eur J Mineral. doi:10.1127/ejm/2017/0029-260

    Google Scholar 

Download references

Acknowledgements

We thank K. Jarolimek, H. Hsu and H.J. Kulik for discussions. We are thankful to N. Near-Ansari for assistance with compiling relevant software and managing libraries on FRAM, the high-performance computing cluster at Caltech. This work is supported by the U.S. National Science Foundation through award EAR-1551433.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natalia V. Solomatova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solomatova, N.V., Asimow, P.D. First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent Hubbard U . Phys Chem Minerals 45, 293–302 (2018). https://doi.org/10.1007/s00269-017-0918-x

Download citation

Keywords

  • Dolomite
  • Ankerite
  • Siderite
  • Carbonates
  • High pressure
  • Lower mantle