Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 3, pp 227–235 | Cite as

Mössbauer study of bornite and chemical bonding in Fe-bearing sulphides

  • M. Borgheresi
  • F. Di Benedetto
  • M. Romanelli
  • M. Reissner
  • W. Lottermoser
  • R. R. Gainov
  • R. R. Khassanov
  • G. Tippelt
  • A. Giaccherini
  • L. Sorace
  • G. Montegrossi
  • R. Wagner
  • G. Amthauer
Original Paper
  • 278 Downloads

Abstract

The Mössbauer spectra of a nearly stoichiometric natural bornite, Cu5FeS4, specimen were reinvestigated between 295 and 4.2 K. There is no difference between the Neél temperature T N as determined by the Mössbauer effect or by the susceptibility measurements (T N = 67.5 K). No additional paramagnetic doublet can be observed in the low-temperature MS spectra. The valence state of Fe is Fe(3−x)+ caused by a partial electron transfer from the Cu+ ions to the Fe3+ ions which increases the shielding of the s-electrons by the d-electron density and by this increases the isomer shift to a value intermediate between tetrahedral high-spin Fe2+ and tetrahedral high-spin Fe3+.

Keywords

Magnetic properties Bornite Mössbauer spectroscopy Chemical bond in sulphides 

Notes

Acknowledgements

Authors acknowledge the Departments of Chemistry and of Earth Sciences of the University of Florence, for funding this research under the ex-60% programme, and the Italian CNR, for support.

References

  1. Aharoni A (1996) Introduction to the theory of ferromagnetism. Clarendon Press, OxfordGoogle Scholar
  2. Amthauer G, Bente K (1983) Mixed-valent iron in synthetic rasvumite, KFe2S3. Z Naturwissenschaften 70:146–147CrossRefGoogle Scholar
  3. Bente K (1987) Stabilization of Cu–Fe–Bi–Pb–Sn-sulfides. Mineral Petrol 36:205–217CrossRefGoogle Scholar
  4. Borgheresi M, Di Benedetto F, Caneschi A, Pratesi G, Romanelli M, Sorace L (2007) An EPR and SQUID manetometry study of bornite. Phys Chem Minerals 34:609–619CrossRefGoogle Scholar
  5. Coey JMD, Spender MR, Morrish AH (1970) Magnetic structure of the spinel Fe3S4. Solid State Comm 8:1605–1608CrossRefGoogle Scholar
  6. Collins MF, Longworth G, Townsend MG (1981) Magnetic structure of bornite, Cu5FeS4. Can J Phys 59:535–539CrossRefGoogle Scholar
  7. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley Interscience, HobokenGoogle Scholar
  8. Di Benedetto F, Bernardini GP, Borrini D, Lottermoser W, Tippelt G, Amthauer G (2005) 57Fe- and 119Sn-Mössbauer study on stannite (Cu2FeSnS4)–kesterite (Cu2ZnSnS4) solid solution. Phys Chem Minerals 31:683–690CrossRefGoogle Scholar
  9. Forcher K, Lottermoser W, Amthauer G (1989) Mössbauer study of raguinite, TlFeS2, and thalcusite, Cu3Tl2FeS4. In: Moh GH (ed) Ore minerals: an experimental approach and new observations. N Jb Miner Abh 160:25–28Google Scholar
  10. Gainov RR, Dooglav AV, Pen’kov IN, Mukhamedshin IR, Mozgova NN, Evlampiev IA, Bryzgalov IA (2009) Phase transition and anomalous electronic behavior in the layered superconductor CuS probed by NQR. Phys Rev B 79:075115CrossRefGoogle Scholar
  11. Gainov RR, Vagizov FG, Golovanevskiy VA, Ksenofontov VA, Klingelhöfer G, Klekovkina VV, Shumilova TG, Pen’kov IN (2014) Application of 57Fe Mössbauer spectroscopy as a tool for mining exploration of Bornite (Cu5FeS4) copper ore. Hyperfine Interact 226:51–55CrossRefGoogle Scholar
  12. Goh WG, Buckley AN, Skinner WM, Fan LJ (2010) An X-ray photoelectron and absorption spectroscopic investigation of the electronic structure of cubanite, CuFe2S3. Phys Chem Minerals 37:389–405CrossRefGoogle Scholar
  13. Goodenough JB (1982) Mössbauer 57Fe isomer Shift as a measure of valence in mixed-valence iron sulphides. J Solid State Chem 41:1–22CrossRefGoogle Scholar
  14. Hawthorne F (1988) Mössbauer spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology, Rev Mineral 18:255–340Google Scholar
  15. Jagadeesh MS, Nagarathna HM, Montano PA, Seehra MS (1981) Magnetic and Mössbauer studies of phase transitions and mixed valences in bornite Cu4.5Fe1.2S4.7. Phys Rev B 23:2350–2356CrossRefGoogle Scholar
  16. Koto K, Morimoto N (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function. Acta Cryst B31:2268–2273CrossRefGoogle Scholar
  17. Lagarec K, Rancourt DG (1998) Extended Voigt-based analytic lineshape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods 129:266–280CrossRefGoogle Scholar
  18. Lepetit P, Bente K, Doering T, Luckhaus S (2003) Crystal chemistry of Fe-containing sphalerites. Phys Chem Miner 30:185–191CrossRefGoogle Scholar
  19. McCammon C, Zhang J, Robert M, Hazen L, Finger W (1992) High pressure crystal chemistry of cubanite, CuFe2S3. Am Min 77:937–944Google Scholar
  20. Mikhlin Y, Tomashevich Y, Tauson V, Vyalikh D, Molodtsov S, Szargand R (2005) A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J Electron Spectrosc Relat Phenom 142:83–88CrossRefGoogle Scholar
  21. Morrish AH (1980) The physical principles of magnetism. RE Krieger Publishing Company Inc, MalabarGoogle Scholar
  22. Oak HN, Baek KS, Jo Y (1996) Superparamagnetic relaxation in Cu5FeS4. Solid State Commun 100:467–470CrossRefGoogle Scholar
  23. Patrick RAD, van der Laan G, Charnock JM, Grguric BA (2004) Cu Lα X-ray absorption spectroscopy and the electronic structure of minerals: spectral variations in non stoichiometric bornites, Cu5FeS4. Am Mineral 89:541–546CrossRefGoogle Scholar
  24. Przewoznik J, Zukrowski J, Gondek L, Gąska C, Lemański A, Kapusta C, Piestrzyński A (2013) Structural, magnetic, and Mössbauer effect studies of bornite. Nukleonika 58:43–46Google Scholar
  25. Qiu P, Zhang T, Qiu Y, Shi X, Chen L (2014) Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity. Energy Environ Sci 7:4000–4006CrossRefGoogle Scholar
  26. Schmid-Beurmann P, Lottermoser W (1993) 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2–FeS2 solid solution series. Phys Chem Minerals 19:571–577CrossRefGoogle Scholar
  27. Townsend MG, Gosselin JR, Tremblay RJ, Ripley LG, Carson DW, Muir WB (1977) A magnetic and Mössbauer study of magnetic ordering and vacancy clustering in Cu5FeS4. Phys Chem Solids 38:1153–1159CrossRefGoogle Scholar
  28. Van der Laan G, Patrick RAD, Charnock JM (2002) Cu L-2, L-3 X-ray absorption and the electronic structure of nonstoichiometric Cu5FeS4. Phys Rev B 6604:135–139Google Scholar
  29. Vaughan DJ, Burns RG (1972) Mössbauer spectroscopy and bonding in sulphide minerals containing four-coordinated iron. In: Proc 24th IGC, 21–30 September 1972, Montreal, 158–167Google Scholar
  30. Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, London, p 494Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. Borgheresi
    • 1
  • F. Di Benedetto
    • 1
    • 2
    • 3
  • M. Romanelli
    • 1
    • 3
  • M. Reissner
    • 4
  • W. Lottermoser
    • 5
  • R. R. Gainov
    • 6
    • 7
  • R. R. Khassanov
    • 6
  • G. Tippelt
    • 5
  • A. Giaccherini
    • 3
    • 8
  • L. Sorace
    • 3
    • 8
  • G. Montegrossi
    • 2
    • 3
  • R. Wagner
    • 5
  • G. Amthauer
    • 5
  1. 1.Dipartimento di Scienze della TerraUniversità di FirenzeFlorenceItaly
  2. 2.IGG-CNRFlorenceItaly
  3. 3.INSTM Unit of FlorenceFlorenceItaly
  4. 4.Institut für FestkörperphysikTU WienViennaAustria
  5. 5.Fachbereich Chemie und Physik der MaterialienUniversität SalzburgSalzburgAustria
  6. 6.Kazan Federal UniversityKazanRussia
  7. 7.Forschungszentrum JülichJülichGermany
  8. 8.Dipartimento di Chimica U. SchiffUniversità di FirenzeSesto FiorentinoItaly

Personalised recommendations